RESEARCH

Open Access

Check for updates

Nutritional management recommendation systems in polycystic ovary syndrome: a systematic review

Leila Shahmoradi¹, Leila Azadbakht^{2,3}, Jebraeil Farzi⁴, Sharareh Rostam Niakan Kalhori¹, Alireza Banaye Yazdipour^{1,5,6*} and Fahimeh Solat^{1,7*}

Abstract

Background People with polycystic ovary syndrome suffer from many symptoms and are at risk of developing diseases such as hypertension and diabetes in the future. Therefore, the importance of self-care doubles. It is mainly to modify the lifestyle, especially following the principles of healthy eating. The purpose of this study is to review artificial intelligence-based systems for providing management recommendations, especially food recommendations.

Materials and methods This study started by searching three databases: PubMed, Scopus, and Web of Science, from inception until 6 June 2023. The result was the retrieval of 15,064 articles. First, we removed duplicate studies. After the title and abstract screening, 119 articles remained. Finally, after reviewing the full text of the articles and considering the inclusion and exclusion criteria, 20 studies were selected for the study. To assess the quality of articles, we used criteria proposed by Malhotra, Wen, and Kitchenham. Out of the total number of included studies, seventeen studies were high quality, while three studies were moderate quality.

Results Most studies were conducted in India in 2021. Out of all the studies, diagnostic recommendation systems were the most frequently researched, accounting for 86% of the total. Precision, sensitivity, specificity, and accuracy were more common than other performance metrics. The most significant challenge or limitation encountered in these studies was the small sample size.

Conclusion Recommender systems based on artificial intelligence can help in fields such as prediction, diagnosis, and management of polycystic ovary syndrome. Therefore, since there are no nutritional recommendation systems for these patients in Iran, this study can serve as a starting point for such research.

Keywords Polycystic ovary syndrome, Artificial intelligence, Application, Decision support system, Nutrition recommender system

*Correspondence: Alireza Banaye Yazdipour byazdipoura@razi.tums.ac.ir; alirezayazdipour20@gmail.com Fahimeh Solat fahimehsolat78@gmail.com

Full list of author information is available at the end of the article

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction

Polycystic ovary syndrome affects 8 to 13% of women of reproductive age worldwide, making it the most common endocrine problem. This condition can cause menstrual disorders, lack of ovulation, obesity, acne, hirsutism, hair loss, and baldness. Long-term complications include endometrial cancer, infertility, insulin resistance, type 2 diabetes, high blood pressure, heart disease, depression, and stress. Short-term consequences and complications may also arise [1]. Early diagnosis of the disease is very important and can reduce the duration of the disease and the mortality rate. Studies show that in many diseases, early diagnosis is difficult for health care providers. On the other hand, patients do not have the information related to self-management and do not have the necessary knowledge to obtain this information. Social withdrawal may become more prevalent as physical symptoms like acne, hair loss, and depression manifest [2-4]. Following diagnosis, implementing lifestyle modifications to address symptoms like elevated cholesterol and insulin resistance is recognized as an innovative therapeutic approach. Given the prevalent overweight status among women with this syndrome, the significance of adhering to a nutritious diet and engaging in physical activity has been underscored. Consequently, the imperative of devising strategies to promote adherence to healthy dietary habits and facilitate weight loss among affected individuals is deemed essential and inevitable [1].

The use of information technology greatly facilitates the prevention, diagnosis and treatment of chronic diseases and increases their accuracy. Among these technologies, it can be mentioned decision support systems, mobile-based applications, virtual reality, augmented reality, and intelligent decision-making systems. These technologies largely solve the challenge of accessing data and evidence-based information for both patients and medical providers [5–10].

In the healthcare domain, recommender systems represent a practical technology enabling self-care through tailored recommendations. Ultrasound imaging can support early disease detection, alleviating healthcare provider workload and expediting diagnosis. This strategy not only conserves resources and reduces expenses but also leverages mobile phone platforms to enhance awareness, disseminate evidence-based knowledge, and foster beneficial shifts in individual behaviors and habits. By harnessing artificial intelligence, a recommender system can enhance dietary practices among patients with PCOS, leveraging the widespread adoption of smartphones to improve access to medical professionals and reliable information [2, 4].

The study conducted by Jan et al. in India in 2022 analyzed six AI models for diagnosing PCOS. They compared these models based on the number of ultrasound images, segmentation, and classification methods. The evaluation highlighted that the Bayesian classifier achieved the highest accuracy of 93.93%. This study underscores the significant potential of AI in diagnosing PCOS and recommends further research to implement this technology effectively [11].

Boyle et al. conducted a study in Australia in 2018 to assess the need for assistance among individuals with PCOS and evaluate mobile health applications in this area. The results show that 98% of participants owned smartphones, 72% had previously used an application for self-care, and 91% expressed willingness to use a PCOSspecific app if available for managing this syndrome. Accurate, evidence-based information was deemed essential in this study, and all the assessed applications met the required quality standards [12].

The research conducted by Portugal et al. in Canada in 2017 focused on the use of machine learning techniques in recommender systems. The study aimed to identify associated issues and assist researchers in implementing these systems more effectively. The findings of the study highlighted various machine learning techniques and their applications, as well as primary and alternative performance criteria [13].

In 2019, Abhari et al. conducted a study in Iran to assess the characteristics of nutritional recommender systems. The study revealed that if these systems are properly designed, implemented, and evaluated, they can serve as effective tools to improve nutrition and promote a healthy lifestyle [14].

The study conducted in India in 2021 by Kaur and colleagues aimed to develop a method for classifying food images to track patients' meals and provide guidance to nutritionists on recommended tactics and image classification. The research focused on utilizing deep learning approaches, particularly convolutional neural networks (CNNs), to classify Indian food images accurately [15].

After conducting research, we found no systematic review that assesses nutritional recommendations for individuals with PCOS. Given the significance of utilizing companion health and AI in managing chronic conditions like PCOS, this study aims to explore the effects and uses of AI-based systems for PCOS.

Motivation

The advancement of AI in healthcare has made it necessary to use AI-powered recommender systems for predicting, diagnosing, treating, and managing chronic ailments like PCOS. There are several reasons why this is important. Ultrasound images are necessary to diagnose PCOS. However, inaccuracies in counting follicles, high diagnostic test costs in developing countries, timeconsuming tests, doctor workload, and diagnostic errors can lead to inaccurate diagnoses. AI techniques can automatically diagnose diseases using ultrasound images, overcoming challenges [16–18]. Additionally, since this disease is intricate and has no definitive treatment, the current approach involves a combination of medication and lifestyle changes for disease management. Hence, utilizing recommender systems or self-care systems that prioritize healthy nutrition could be beneficial in mitigating symptoms and lessening the likelihood of associated mental health issues [19, 20]. Besides disease prediction and probability estimation, recommender systems can detect suspicious cases based on AI and take action to prevent disease occurrence or early detection [21].

Contribution

The article aims to explore the use of artificial recommender systems in polycystic ovary syndrome research. We also examine the challenges and limitations of using these systems and algorithms. This article attracts researchers to conduct studies in the field of recommender systems. The sections of this article are as follows:

- Review of studies from the perspective of publication.
- Review studies of characteristics.
- Examining the limitations and challenges of designing recommender systems.

Materials and methods

Study design

The current systematic study was designed and implemented based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

Data sources

In this study, we were six researchers. The first one determined the search strategy and performed the search in PubMed, Scopus, and Web of Science databases from inception until 6 June 2023. To conduct a search for relevant articles, we utilized a combination of keywords from the article abstracts, including "polycystic ovary syndrome", "recommender system", "application program", "artificial intelligence" and "nutritional program". We also incorporated Medical Subject Headings (Mesh) into our search strategy. For the complete search strategy, please refer to the supplementary file provided (Table S1-S3).

Selection criteria

One of the researchers determined the inclusion and exclusion criteria based on similar studies, and finally criteria were approved by the supervisor's opinion. Inclusion and exclusion criteria are as follows:

- 1) Studies about recommender systems
- 2) Articles related to PCOS
- 3) Articled related to diet management in PCOS
- 4) Studies that developed an AI system or application

Exclusion criteria:

- 1) Review articles, meta-analysis, conference abstracts, letters to the editor, book chapter.
- 2) Articles that are unrelated to the goals of the current research.
- 3) Articles whose full text is written in non-English language.
- 4) Articles whose full text is not available for data extraction.

Study selection

In this stage, one of the researchers entered all the articles retrieved from the three databases (PubMed, Web of Science, and Scopus) into the Endnote X9 (Thomson Reuters, Toronto, Ontario, Canada) software. Another researcher removed duplicates. Two of researchers separately, checked the title and abstract of the articles. The items that did not match the inclusion and exclusion criteria were excluded from the study. Finally, by studying and examining the full text of the remaining articles, he selected the articles related to the topic as the final articles. In cases where the two researchers had differing opinions, the supervisor provided the final decision.

Data extraction

A researcher created an Excel form with the guidance of our supervisor. The research team reviewed articles and extracted necessary data elements. The Excel form included data such as the number of articles, publication year and country.

Quality assessment

Two independent reviewers assessed the quality of studies using the Newcastle-Ottawa quality assessment criteria proposed by Malhotra [17], Wen et al. [16], and Kitchenham et al. [18]. The quality assessment criteria consist of eleven questions: Q1) Are the aims of the study clearly defined?; Q2) Are all study questions answered?; Q3) Are the variables used in the study clearly stated?; Q4) Are AI techniques, such as machine learning, clearly defined?; Q5) Is the data set size appropriate?; Q6) Is the data collection method clearly stated?; Q7) Is the study methodology repeatable?; Q8) Are the results and findings clearly presented?; Q9) Are the performance measures used to assess the model(s) clearly stated?; Q10) Are the limitations of the study stated?; Q11) Does the research have value for the academic or industry community? The questions were ranked based on three values: "Yes=2", "Partial=1", or "No=0". Each study could obtain a maximum score of 22 and a minimum score of 0. Criteria used to rank the quality assessment of each study include: i) \leq 49% = Low quality; ii) 50% and 69% = Moderate quality; iii) above 70% = High quality.

Results

Study selection

Figure 1 shows the process of searching and selecting articles based on the PRISMA flowchart. We found a total of 15,064 articles by searching in PubMed, Web of

Science, and Scopus databases. After removing duplicates (n=6537), We took three steps: (1) screening the article titles, (2) reviewing the article abstracts, and (3) reviewing the full text of the articles and extracting the data by the second group. Based on the predetermined criteria, we eliminated 8,408 studies during the one and two-stage process. In the third stage, from 119 articles unrelated studies (n=86), articles with unavailable full text (n=8), review studies (n=4), and book chapters (n=1) were excluded. Finally, 20 articles entered the third stage, i.e., a review of the full text of the articles. The research team extracted required data elements such as publication year, country, journal/conference, purpose, study design, sample size, sample age range, results, tools, challenges/

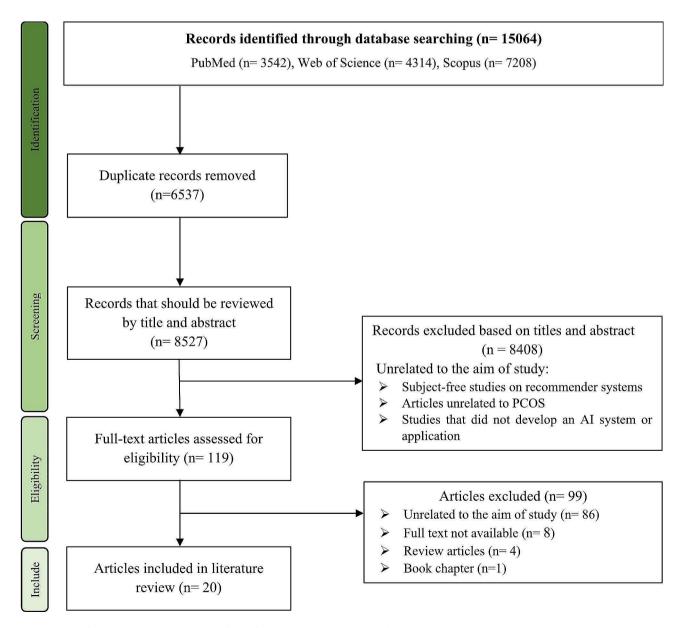


Fig. 1 PRISMA flow diagram indicating results of identification and screening process for included and excluded papers

Author (Ref.)	Pub- C lica-	Pub- Country lica-	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) algorithms	System target
	tion year										limitation	Diet Al Application		an- tici- pa-
Lehtin- en et al. [21]	1997 FI	Finland	*		Case study	Com- paring the perfor- mance of SOM and TPFFN in an- ticipat- ticipat- possi- possi-	Pa- tients: 54 Control 29 29	33 +		TPFFN accuracy was bet- ter than SOM.	Small sample data volume	*	SOM, TPFFN, MLP	* tion tic
Zhang et al. [22]	2010 USA	SA	*		ţ,	PCOS Struc- struc- tion of cation models for the antici- pation of the occur- rence of ovula- tion trean worth ment in women	4	Clomiphene ci- trate: 27.9 + 4.0 The combina- tion of clomi- phene citrate and metformin: 28.3 + 4.0		Clomi- phene citrate alone is better and superior two other two ods for treating PCOS.		*	Decision trees	*

Author Pub- Country Journal co (Ref.) lica- tion vear vear year Mehro- 2012 India * Tra et al. [2] 1 * *											
2012 India	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and limitation	Relevance to the study Diet Al Application	AI (AI) algorithms	System target an-di- tici-ag-
2012 India											pa- nos- tion tic
tra et al. [2]		Original	de-		Normal:		Bayesian	Need to	*	Bayesian	*
<u>ন</u>			scribed	150	32.24 ± 2.02		classi-	improve		Classifier,	
			a	abnor-	Abnormal:		fier gives	accuracy by		Multivari-	
			method	mal: 50	31.24±2.48		higher	using other		ate LR	
			that				accuracy	classifiers			
			Enables				than				
			auto-				logistic				
			matic				regres-				
			diagno-				sion.				
			sis of				Using				
			PCOS				the				
			based				proba-				
			on				bilistic				
			features				model				
							helps				
							doc-				
							tors to				
							screen				
							early				
							patients				
							who are				
							more				
							likely to				
							develop				
							the				
							disease.				

Pub- Country lica-	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) algorithms	System target
tion year									limitation	Diet Al Application		an- di- tici- ag- pa- nos- tion tic
2016 India	*		Original	Propos-	31		SQL	The		*	NFRS, ANN	
)	ing a			MATLAB R 2016 a	structure				
				new			Dataset: Polycystic					
				combi-			Ovarian Syndrome	on fuzzy				
				natorial			Proliferative Phase					
				struc-			Endometrial Cell					
				ture to			Types	in risk				
				discov-			-	anticipa-				
				er the				tion				
				severity				The				
				of the				severity				
				disease				of the				
				.c				disease				
				people				was im-				
				with				proved.				
				the				The pro-				
				disease				posed				
								model				
								per-				
								formed				
								better				
								than the				
								other				
								created				
								models				
								with an				
								accu-				
								racy of				
								93.64%				

Author Dout Currty Currty Currty Currty Currty State Gala State	e_	iadie i (continued)												
ton part 2017 Indonesia • Original Design Patienti. 2017 Indonesia • Original Design Patienti. 2017 Indonesia • Original 20 mark Anto- ing a 14 0 Softmax Matto- ing a 14 0 Softmax Matto- seten 4 0 Softmax Matto- seten 4 0 Softmax Matto- based 14 0 Softmax Matto- based 14 0 Softmax Matto- based 14 0 Softmax Matto- non Micro-average catego- con fi-Measure into two seten 1 Micro-average catego- difa- based 14 0 Softmax Matto- based 1	Author (Ref.)		Journal		study design	Study aim(s)	Sample size	Sample description	Tool	Results		Relevance to the study	AI (AI) algorithms	System target
2017 Indonesia * Original Design- ing and creat- ing and system Patient: Softmax 3D matrix Auto- antic * CNN creat- ing and system 14 Dosofund: Creat- ing and system 13 Dissofund: Creat- ing and creat- cost 14 Dissofund: Creat- ing an it * CNN system SGD method images T-Measure into two convo- con		tion year									limitation	Diet Al Application		ici - ici
ing and 40 Softmax matic creat- Healthy: Loss function classifi- ing a 14 Dippotnt cation of system SGD method images based F1-Measure into two on Micro-average catego- convo- F1-Measure into sick uttional network de- classify by the to de- sound done into sound two cat- eactions of classifi- into well and two cat- sick and healthy	Cahyo-	2017 Indonesia		*	Original	Design-			3D matrix	Auto-		*	CNN	*
creat- Healthy: Loss function ing a 14 Dropout system system based based based on Convo- lutional neural neural neural neural neural neural network to cassify ultra- sound images into two cat- egories, sick and healthy	÷)				Softmax	matic				
ing a 14 Dropout system based based based on F1-Measure on Convo- lutional neural neural neural neural network to F1-Measure F1-Measure into to classify ultra- sound images into two cat- egories, sick and healthy									Loss function	classifi-				
SGD method F1-Measure F1-Measure									Dropout	cation of				
F1-Measure Micro-average F1-Measure						system			SGD method	images				
Micro-average F1-Measure						based			F1-Measure	into two				
F1-Measure						uo			Micro-average	catego-				
						CONVO-			F1-Measure	ries, sick				
						lutional				and				
						neural				healthy,				
						network				by the				
						to				de-				
						classify				signed				
						ultra-				system				
						sound				lt was				
						images				done				
						into				well and				
						two cat-				was very				
sick and healthy						egories,				accurate				
healthy						sick and								
						healthy								

Author Pub- Country (Ref.) lica-	Journal	conference	study design	Study aim(s)	Sample size	Sample Sample size description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) System algorithms target	System target
tion year									limitation	Diet Al Application		an- di- tici- ag- pa- nos- tion tic
Dewi et 2018 Indonesia		*	Original	Svstem			Gabor Wavelet	The use		*	Competi-	*
			D a	desian			method	of com-			tive Neural	
				based				petitive			Network	
				on ma-				neural				
				chine				network				
				learning				can				
				and Al				increase				
				to help				the				
				Doc-				accu-				
				tors can				racy of				
				diag-				diagno-				
				nose				sis in this				
				the				article				
				disease				The				
				more				highest				
				easily				accuracy				
				through				is esti-				
				ultra-				mated at				
				sound				80.84%.				
				images				Accord-				
								ing to				
								the re-				
								sults, the				
								number of				
								adonted				
								features				
								has a				
								direct				
								relation-				
								ship				
								with				

AuthorPub-CountryJournal(Ref.)lica-tiontionyearyearionThu-2018Indonesiaal. [26]al. [26]												
		conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and limitation	Relevance to the study Diet Al Application	AI (AI) System algorithms target an- d ttici- a ttici- a	System target an- di- tici- ag- pa- nos-
	*		Original	System design based on the Gibber- Violet to to Helping to di- agnose and disease	16–32 features		Gabor Wavelet method	The best accuracy of using the el- emental neural neural network was 78.1%, which was 78.1%, which was achieved with 32 features. A higher number of data for train- ing the network can network of the network can	More data for training affects the time of diagnosis	*	Elman Neural Network, Polynomial SVM, Radial Basis Function SVM Linear SVM	

Author (Ref.)	Pub- Country lica-	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	the	Al (Al) System algorithms target	System target
	tion year									limitation	Diet Al Application	plication		an- di- tici- ag-
														pa- nos- tion tic
	2018 India	*		Original	Identify	119	18-22	PCOS Dataset	Using	The data set	*		Apriori	*
al. [<mark>27</mark>]					recur-			source:	the	used is not			algorithm	
					ring			https://	men-	enough.				
					pat-			github.com/	tioned	In addition,				
					terns			PCOS-Survey/	algo-	Patients'				
					among			PCOSData	rithm to	concerns				
					the			Frequent Itemset	extract	about				
					-dmb-			Mining (FIM)	the main	information				
					toms of			Spss	widgets	disclosure				
					PCOS				Here,					
					patients				the main					
					using				signs					
					a set of				have					
					fre-				per-					
					quently				formed					
					used				well for					
					items				anticipa-					
									tion as					
									well as					
									deter-					
									mining					
									relation-					
									ships					
									between					
									fasturac					

o- Country												
	Journal	conference	study design	Study aim(s)	Sample S size d	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) System algorithms target	System target
tion year									limitation	Diet AI Application		an- di- tici- ag- pa- nos- tion tic
2019 India		*	Original		patients: 18–40	8-40	SPSS V 22.0	Among		*	NB, LR,	*
				$\overline{\mathbf{n}}$	177		Principal Com-	the algo-			KNN, CART,	
				creat-	Healthy:		ponent Analysis	rithms			RF, SVM	
				ing a	364		(PCA) f - f - f	used,				
				system			Spyder Python	Algo-				
				based			IDE	rithm				
				on Al			HTML with SQL	RF per-				
				for as-			for designing a	formed				
				sistance			proper user	best				
				To di-			interface	with				
				agnose				89%				
				and an-				accu-				
				ticipate				racy. The				
				PCOS				system				
				disease				de-				
								signed				
								accord-				
								ing to				
								experts				
								can be				
								useful				
								in early				
								disease				
								diagno-				
								sis and				
								save				
								time.				

Sample Tool
gescription
Jupyter Notebook
Python
Datients: 18–40 "Polycrystic Ovary
ML application

Author Pub- (Ref.) lica- tion year hassan 2020 et al. [30]	Pub- Country lica- tion	Journal	conference										
				study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and limitation	Relevance to the study Diet Al Application	AI (AI) algorithms	Syste targe an- tici- pa-
	2020 India	*		Original	Design and build system based for help for help to di- pare PCOS and com- pare perfor- mance of dif- ferent algo-	42 variables		R-language R libraries: e 1071, CARET, naivebayes, rpart, randomForest, klaR, ggplot2	Among the 5 al- gorithms used, RF algo- rithm and support vector machine respec- tively Accu- racy of 95% per- formed better.		*	LR, SVM NB, CART, RF	*
Kodi- 2021 palli et al. [31]	2021 India	*		Original	Design- ing a for disease antici- pation and related disor- ders based	624	25 25	Questionnaire, K10 tool, matplotlib, Fuzzy TOPSIS	The use of the system is cost- effective. The perfor- mance of SVM and fuzzy al- gorithms was 94.01% and 98.2%, respec-		*	D-Tree, KNN, SVM, Fuzzy	*

Author Pub- Country (Ref.) lica-												
	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) algorithms	System target
tion year									limitation	Diet Al Application		an- di- tici- ag- pa- nos- tion tic
Song et 2022 China al. [32]	*		Original	This study pro- posed a model based on Artificial intel- ligence algo- rithm, which is a non- invasive with the help of tured images from the	721		U-Net network, convolutional block attention multi-instance (MIL), MLP, Resnet 18	A non- invasive method, accuracy of this mated at 0.978%.	Ambigui- ties in the images, There is a need to con- duct more studies to generalize the results	*	CNNs: V3, Vgg 16, and Vgg 19	*
				eyes to help di- agnose PCOS.								

Author Pub (Ref.) lica tior	Pub- Country lica- tion	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and limitation	Relevance to the study Diet Al Application	AI (AI) algorithms	Syste targe an-
year	-												tici- ag- pa- nos- tion tic
Mandal 202	2021 India		*	Original	Provid-	19		histogram	This	To deter-	*	K-means	*
et al.					ing an			equalization	method	mine the		clustering	
[16]					auto-				can	exact shape			
					mated				auto-	and size of			
					diag-				matically				
					nostic				detect	There			
					ap-				the fol-	are more			
					proach				licles	features that			
					for				Ultra-	need to be			
					Detec-				punos				
					tion of				images				
					follicles				are ef-				
					in the				fective in				
					ovary				reduc-				
					using				ing the				
					ultra-				work-				
					sound				load of				
					(SU)				doctors.				
					images								
					during								
					infer-								
					tility								
					treat-								
					ment.								

Iable 1 (continued)													
Author (Ref.)	Pub- Country lica-	Journal	Journal conference	study design	Study aim(s)	Sample Sample size descripti	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) algorithms	System target
	tion year									limitation	Diet Al Application		an- di- tici- ag- pa- nos- tion tic
Nilofer et al. [33]	2021 India	*		Original	Present- ing a pro- posed method for auto- matic division of areas in ultra- sound images into			Wiener filter, Takagi–Sugeno– Kang (TSK), fuzzy inference method, Maximum Likeli- hood (ML), Extreme Learning Adaptive Neuro- inference System (ELANFIS)	The pro- posed com- bined had 99% accuracy in de- tecting follicles.	Further research is needed to be done by institu- tions and stakeholders to confirm the model.	*	Fuzzy logicis, Hybrid, Intelligent Water Drop KNN, KNN, SVM	*
					with follicles and without follicles.								

Author Pub- Country (Ref.) lica- tion													
tion	Country	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) algorithms	System target
year										limitation	Diet Al Application		an- di- tici- ag- pa- nos- tion tic
Zhang 2021 China	China	*		Original	Design-	Thou-		DisGeNET,	The		*	CNN, GCN	
al.)	ing a			GWAS Catalog,	current				
[34]					system	genetic		GTEx Portal	algo-				
					based	variants			rithm				
					uo				in the				
					deep				field of				
					learning				predict-				
					for the				ing the				
					antici-				relation-				
					pation				ship of				
					of dis-				disease				
					eases				with				
					related				genetics				
					to ge-				com-				
					netics				pared				
					includ-				with				
					ing				algo-				
					PCOS				rithms				
									Classics				
									such as				
									RF and				
									Support				
									Vector				
									Machine				
									per-				
									formed				
									better.				

Author (Ref.)	Pub- lica-	Pub- Country lica-	Journal	conference	study design	Study aim(s)	Sample size	Sample description	Tool	Results	Chal- lenges and	Relevance to the study	AI (AI) algorithms	System target
	tion year										limitation	Diet Al Application		
Hosain [35]	2022	Bangla- desh		*	Obser- vational study	Devel- opment of a system called PCONet PCONet diag- nose pcos through convo- lutional network- based ultra- sound sound	Dataset 1:1730 images Dataset 2:339 images		Image Data Generator, Keras	The present system not only per- system not only per- formed well in well in diagnos- ing the disease through in mages, but also per- formed better with an accuracy of 98.12.		*	CNN, InceptionV3	· *
Zigarelli et al. [36]	2022	United States of America	*		Retro- spective study	devel- oping self- diag- nostic predic- tionmod- els for PCOS in provid- patients and clinical	541	20-48	Rotterdam criteria PCA Method	The pre- diction accuracy was es- timated 87.5 to 90.1%	The sample was drawn ffrom a specific population in India from several hospitals.	*	K-Means Clustering, model model	*

Al (Al) System algorithms target	an- di- tici- ag- pa- nos- tion tic	*
AI (AI) algorithn		DT, LDA, LR, KNN, SVM
Relevance to the study	Diet Al Application	*
Results Chal- Rel lenges and <u>stu</u>	limitation	More samples with more diverse data for presenting the model in the clinical environ- ment is needed
Results		SVM per- formed better than other algo- rithms.
Tool		Kaggle website
Sample Sample size description		
Sample size		Patients: 177 Healthy: 364
Study aim(s)		Design- ing and creat- ing a decision support system based on AI to diag- PCOS and de- termine the stage of the
study design		Original
Author Pub- Country Journal conference (Ref.) lica-		
Journal		*
Country		Nsugbe 2023 England et al. [37]
Pub- lica-	tion year	2023
Author (Ref.)		Nsugbe et al. [37]

 Table 1 (continued)

 Author Pub- Country Journal conference

Fig. 2 Distribution of studies by country and year

Fig. 3 Distribution of studies by country

limitations, Relevance to the study and system target. We recorded the extracted data in an Excel (Table 1).

Publication analysis

Distribution of studies by year The studies were conducted from 1997 to 2023. Figure 2 shows the results. 2021 (n=5) has the most frequency. The second frequency was related to 2018 and 2022. (n=3).

Distribution of studies by country The reviewed studies were conducted in eight different countries. The frequency of these studies in each country is depicted in Figs. 2 and 3. India had the highest number of studies (n=9), followed by Indonesia (n=3), the United States of America, and China (each with 2), ranking second and third, respectively.

Distribution of articles based on journal/conference name, publisher and impact factor The articles were appeared in 11 different journals and seven conferences. The journal "Frontiers in Endocrinology" had the highest number (n=2), while all the other journals had only published 1 article. All conferences, except the "International Conference on Data and Information Science," presented a paper on the topic. Tables 2 and 3 display the distribution of articles in this field.

Study specifications

Frequency of studies based on AI/application Based on the survey, most (95%) of the studies focused on models and systems utilizing AI technology [2, 16, 21–37], while only one study resulted in the creation of an AI-based application [18].

Table 2 Distribution of articles based on journal/conference name, publisher and impact factor

Journal/conference name	Cite Score quartile	Publisher	Indexed in (ISI, Scopus, PubMed)	IF	Count of papers
Human Reproduction	Q1	ProQuest	ISI, Scopus, PubMed	6.1	1
International Journal of Circuit Theory and Applications (I J C T A)	Q1	Wiley	ISI, Scopus	2.3	1
Information Systems Design and Intelligent Applications	-	-	-	-	1
Bioscience Biotechnology Research	-	-	-	-	1
International Journal of Computer Applications	Q2	Other	ISI, Scopus	1.1	1
Webology		Other			1
Frontiers in Cell and Developmental Biology	Q2	Other	ISI, Scopus, PubMed	5.5	1
Journal of Medical Internet Research (JMIR)	Q1	Other	ISI, Scopus, PubMed	7.4	1
Healthcare Analytics	-	Other	Scopus		1

Table 3 Distribution of articles based on conference name

Conference name	Count of papers
IEEE India Conference (INDICON)	1
International Conference on Information and Communica- tion Technology (ICOICT)	1
International Conference on Data and Information Science	2
IEEE Region 10 International Conference Tencon	1
International Conference on Advances in Biomedical Engi- neering (ICABME)	1
Proceedings Of International Conference on Frontiers in Computing and Systems	1
International Conference on Engineering and Emerging Technologies (ICEET)	1

Table 4 Performance metrics for model evaluation	Table 4	nance metrics for model eva	luatior
--	---------	-----------------------------	---------

Metric	Formula	Range	Desirable
Precision	TP/TP+FP	0-100%	Max
Sensitivity/ Recall	TP/TP + FN	0-100%	Max
Specificity	TN/TN + FP	0-100%	Max
Accuracy	TP + TN/TP + TN + FP + FN	0-100%	Max
<i>F</i> – <i>Measur</i> e	(2 * Precision * Recall) / (Precision + Recall)	0-1	Max
Positive Predictive Value (PPV)	(sensitivity * prevalence) / [(sensitivity * prevalence) + ((1 – specificity) * (1 – prevalence))	0-100%	Max
Kappa statistic	2*(TP*TN- FN* FP)/ (TP+ FP)*(FP+ TN)*(TP+ FN)*(FN+TN)	0-1	Max
Mean Absolute Error (MAE)	$(1/n) \Sigma(i = 1 \text{ to } n) y_i - \hat{y}_i $	LB:0	Min
Root Mean Squared Error (RMSE)	$\sqrt{\Sigma}(i=1 \text{ to n}) (y_i - \hat{y}_i)^2 / N$	LB:0	Min
Root Relative Squared Error (RRSE)	$\sqrt{\Sigma}(i=1 \text{ to } n) (ti - ri)^2 / \Sigma(i=1 \text{ to } n) (ti - t)^2$	0-∞	Min
Area Under the Curve (AUC)		0-1	Max
Precision-Recall Curve (AUPR)		0-1	Max

Frequency of studies based on the type of system application: When it comes to systems and applications designed for various purposes, they can be classified into three types: prediction, diagnosis, and management. Among all the conducted studies, 60% focused on diagnosis [2, 16, 24–26, 29, 30, 32, 33, 35–37], 30% on prediction [21–23, 27, 31, 34], and none on management. Additionally, 10% of studies focused on both diagnosis and prediction [18, 28]. However, none of the studies examined the role of nutrition in managing PCOS.

Specifications of performance metrics for model evaluation Table 4 displays the metrics utilized in the articles. MAE [23], RMSE [23, 33], and RRSE [23] calculate three types of errors in implemented models, so the lowest value is considered for an ideal model. MAE in mathematics is the arithmetic equivalent of absolute errors. This criterion only measures the magnitude of the error and does not give a significant indication of the direction of the error. These three criteria have been used in a study to evaluate the model's performance [23, 33].

The Kappa statistic is a tool that evaluates the effectiveness of a model's reliability and ensures an accurate representation of changes in collected data. It can range from -1 to +1. Despite being a common statistic, there is no consensus on measures of it in health studies. It has been utilized solely in one study [38].

Most studies commonly used Sensitivity [2, 18, 28–30, 32–37], Specificity [2, 28], and Accuracy [2, 18, 26, 28–30, 32–37] as criteria. These metrics measures by True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). F1 score or F - Measure as a harmonic average of accuracy and recall. Where there is a balance between accuracy and recall, it is a better metric [2, 18, 26, 28–30, 32–37].

Specifications of decision support systems for PCOS prediction

As presented in Table 1, Eight studies [18, 21–23, 27, 28, 31, 34] designed a model to predict disease. These studies

used Decision trees [22, 31], Topology-preserving forward network [21], multi-layer perceptron [21], NFRS [23], Artificial neural network [23], Apriori algorithm [27], NB classifier method [28], LR [18, 28], KNN [18, 28, 31], CART [28], RF Classifier [18, 28], Gaussian Naive Bayes [18], Fuzzy [31], CNN [34], GCN techniques [34] and SVM [18, 28, 31].

Specifications of decision support systems for PCOS diagnosis

Automated detection models based on database: Eight studies [2, 18, 28-30, 32, 36, 37] have implemented automated detection models based on a database to diagnose or screen patients automatically. These studies aimed to diagnose diseases automatically by creating an AI-based model using readily available data or data from those who seek treatment at health centers. The studies all followed a similar methodology. They first collected data from healthy and sick individuals. After that, they performed pre-processing to identify parameters and characteristics. They designed the model using selected techniques and evaluated its performance using model evaluation metrics. The studies utilized various methods such as LR [2, 28-30], Bayesian classifier [2], DT [29, 37], SVM [18, 28-30, 37], CNN [32], KNN [18, 28], quadratic discriminant classifier [18, 29], RF [18, 28-30], CART [28, 30], Gaussian naive Bayes [18], and K-means clustering [36] to develop the automated diagnosis model.

Classification models based on images: Four studies [24–26, 35] have developed a diagnostic model for this disease using ultrasound image classification. Ultrasound images were used to train and test the model., and different methods such as CNN [24–26], and SVM [26] were used in these studies.

Follicle segmentation models: Two studies [16, 33] created a model to segment follicles in ultrasound images for automatic disease diagnosis. The model specifically diagnoses through follicle segmentation, reducing the time needed for follicle counting. The process began with the publication of images, followed by image processing to segment the follicles. After extracting features, classifiers were used to design the model. Techniques used during the pre-processing stage included histogram equalization, contrast enhancement, and the Wiener filter for noise reduction of the images. The segmentation stage utilized the Fuzzy logicis, Hybrid Intelligent, Water Drop (IWD), KNN, SVM [33] and K-means clustering [16].

Limitations and challenges mentioned in the studies

As presented in Tables 1 and 10 studies pointed out the limitations and refinements. Accordingly, the small volume of sample size and features in 4 studies, the need to conduct more studies in 3 studies, the increase in the time of automatic diagnosis by the system by using more

data in one study [26], the unwillingness of patients to disclose reports and clinical data in one [19] and the need to improve accuracy using other classifiers is mentioned in one study [2].

Quality assessment of included studies

The quality assessment of the included studies is detailed in the Supplementary file (Table S4), with 17 studies rated as high quality and three as moderate qualities.

Discussion

The purpose of this study was to conduct a thorough review of recommendation systems for women with PCOS. Specifically, we focused on models or applications that utilized artificial intelligence. We collected information from various sources such as publication year, country, journal or conference, sample size, age of participants, limitations and challenges, and results. During systematic review, we found five studies that shared a similar approach [2, 11, 12, 14, 17, 19]. We found reasons for using mobile or AI-based recommender systems in PCOS disease management. We will now delve into the study's findings and other studies.

Abhari et al. investigated nutritional recommendation systems without considering a specific disease. In this study, we reviewed the proposed recommender systems for polycystic ovary syndrome with its various applications [14].

Based on the study results, obesity in people with PCOS, with the escalation of symptoms, increases the cost of treatment and reduces it, especially in infertility. The expenditure of lifestyle modification with the help of health and weight loss is lower than drug therapy. Modifying lifestyle and nutrition using mobile phones is considered a low-cost intervention with a lower percentage of invasion [20]. The results of a 2018 study by Jacqueline A. Boyle and colleagues in Australia showed that a quality disease management application met the needs of patients; however, none of the applications reviewed had quality [12].

As mentioned, early diagnosis of the disease in the early stages is associated with risk reduction of disease consequences. Therefore, we may need recommender systems to reduce risk reduction and time of the diagnosis and increase accuracy [32]. One study by Naila Jan and colleagues in 2023 investigated AI techniques for PCOS diagnosis. The results of this study show that early diagnosis of this disease is difficult despite different symptoms in people, so automatic detection systems can be used as an accurate solution in this field [17]. As with our results, the existence of a limited amount of data is considered as one of the obstacles to the implementation of this type of study [17, 27].

Two studies conducted by Naila Jan and colleagues in India in 2022 reported a PCOS rate of 3.7 to 22.5%, which was higher in urban than rural women [11, 17]. Based on the review, 40.9% of studies have been conducted in India, which justifies the high rate of PCOS. Also, unhealthy lifestyles, including unhealthy eating, can be a reason for most urban women to do this.

Among the models designed to predict PCOS, the best accuracy belongs to a fuzzy logic-based model with an accuracy of 98.2% [31]. In the field of PCOS diagnosis, a hybrid model based on ANN, CNN and InceptionV3 has the best performance among the designed models with an accuracy of 98.12 [35]. RF and SVM were two widely used algorithms with acceptable performance, but the performance of the CNN-based model with 97% accuracy is better than these two algorithms [32]. Based on the study by Naila Jan and colleagues, the best performance belonged to a CNN-based system with an average of 76.36% and a micro-average f1-score of 100%. KNN, ANN, and Fuzzy logic with an accuracy of 97%, 97.5%, and 97.30 were the best classification techniques among the reviewed articles [11, 17].

Another study in 2018 by Jue Xie and colleagues in Australia aimed to investigate the AskPCOS application and the steps involved in creating it. The results showed that the mentioned program is one of the best evidencebased user programs to manage PCOS disease. Due to the support of 5 common languages of the world, it can eliminate the inequality of lack of access to information in developing countries. According to the evaluation, 80% of people were satisfied. The application's usefulness was 70%. Jacqueline A. Boyle's study showed that evidencebased application programs positively affect the patient's awareness [19].

Study limitations The study has several limitations. (1) only two studies addressed the aspect of concomitant health management in PCOS. (2) there is a lack of access to several paid articles that can provide better results by reviewing them. 3, the case was a similar study in other developing countries such as Iran, which may cause problems in the results of this study in this country. Therefore, we recommend carrying out more specialized studies about recommender systems. We should use AI to modify lifestyles to nutritional patterns, such as providing a dedicated budget, creating motivation, and creating a culture among researchers.

Conclusion

We conducted a systematic review to explore the use of AI and companion health systems in managing polycystic ovary syndrome, with a focus on nutrition. Although AI has primarily been used for disease diagnosis, the positive impact of AI and companion health systems in providing nutrition-based treatment solutions is significant. Therefore, we recommend that countries, particularly those with a high number of affected individuals, prioritize policies that encourage further studies to evaluate the effectiveness of recommendation systems on the nutrition of people with polycystic ovary syndrome. We can work on the quality of life for individuals affected by this condition.

Abbreviations

- AI Artificial Intelligence
- PCOS Polycystic ovary syndrome
- SOM Self-Organizing Map
- TPFN Topology-Preserving Forward Network
- MLP Multi-Layer Perceptron
- NFRS Neural Fuzzy Rough Set Evaluation
- ANN Artificial Neural Network
- KNN K-Nearest Neighbor
- CART Classification and Regression Trees
- SVM Support Vector Machine
- I R Logistic Regression
- RF Random Forest
- SFFS Sequential Forward Floating Selection
- DT Decision Tree
- RCT Clinical Randomized Trial
- NB Naïve Baves
- GCN Graph convolutional network
- CNN Convolutional Neural Networks
- LDR Linear Decision Analysis

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12905-024-03074-3.

Supplementary Material 1

Acknowledgements

We would like to express our gratitude to the Tehran University of Medical Sciences for their invaluable support.

Author contributions

ABY and FS collected the data and wrote the first manuscript. LSH, LA, ShR.NK and JF supervised all stages of the study. All authors reviewed and approved the final manuscript.

Funding

No funding sources.

Data availability

The datasets generated and/or analysed during the current study are available in the PubMed, Scopus, and Web of Science databases.

Declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was carried out in the first phase of the thesis entitled "Design and evaluation of the application program of nutrition advisor for women with polycystic ovary syndrome (PCOS)" and was approved by the Research Ethics Committee of Tehran University of Medical Sciences, Tehran, Iran (ethical code: IR.TUMS.SPH.REC.1402.198).

Consent for publication

Not applicable.

Author details

¹Health Information Management and Medical Informatics Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

²Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran

³Endocrinology and Metabolism Research Centre, Tehran University of Medical Sciences, Tehran, Iran

⁴Health Information Technology Department, School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Balouchestan, Sistan, Iran

⁵Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran

⁶Department of Health Information Technology, School of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran

⁷Student Research Committee, Saveh University of Medical Sciences, Saveh, Iran

Received: 12 January 2024 / Accepted: 4 April 2024

Published online: 12 April 2024

References

- Akre S, Sharma K, Chakole S, Wanjari MB. Recent advances in the management of polycystic ovary syndrome: a review article. Cureus. 2022;14(8):e27689.
- Mehrotra P, Chatterjee J, Chakraborty C, Ghoshdastidar B, Ghoshdastidar S, editors. Automated screening of Polycystic Ovary Syndrome using machine learning techniques. 2011 Annual IEEE India Conference; 2011 16–18 Dec. 2011.
- Nilashi M, Ahmadi H, Shahmoradi L, Mardani A, Ibrahim O, Yadegaridehkordi EJJSC et al. Knowledge Discovery and diseases Prediction: a comparative study of machine. Learn Techniques. 2017;4(5).
- Alotaibi M, Alsinan A, editors. A mobile Polycystic ovarian syndrome management and awareness system for Gulf countries: System architecture. 2016 SAI Computing Conference (SAI); 2016 13–15 July 2016.
- Shahmoradi L, Safdari R, Ahmadi H, Zahmatkeshan M. Clinical decision support systems-based interventions to improve medication outcomes: a systematic literature review on features and effects. Med J Islamic Repub Iran. 2021;35:27.
- Shahmoradi L, Rezayi SJJoN. Rehabilitation. Cognitive rehabilitation in people with autism spectrum disorder: a systematic review of emerging virtual reality-based approaches. 2022;19(1):91.
- Maghooli K, Langarizadeh M, Shahmoradi L, Habibi-Koolaee M, Jebraeily M, Bouraghi HJAIM. Differential diagnosis of erythmato-squamous diseases using classification and regression tree. 2016;24(5):338.
- Gopal G, Suter-Crazzolara C, Toldo L, Eberhardt WJCC, Medicine L. Digital transformation in healthcare–architectures of present and future information technologies. 2019;57(3):328–35.
- Nilashi M, Ahmadi N, Samad S, Shahmoradi L, Ahmadi H, Ibrahim O, et al. Disease Diagnosis Using Mach Learn Techniques: Rev Classif. 2020;7(1):19–30.
- Shahmoradi L, Almasi S, Ahmadi H, Bashiri A, Azadi T, Mirbagherie A, et al. Virtual reality games for rehabilitation of upper extremities in stroke patients. J Bodyw Mov Ther. 2021;26:113–22.
- Jan N, Makhdoomi A, Handa P, Goel N, editors. Machine learning approaches in medical image analysis of PCOS. 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS); 2022: IEEE.
- Boyle JA, Xu R, Gilbert E, Kuczynska-Burggraf M, Tan B, Teede H, et al. Ask PCOS: identifying need to inform evidence-based App Development for Polycystic Ovary Syndrome. Semin Reprod Med. 2018;36(1):59–65.
- Portugal I, Alencar P, Cowan D. The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl. 2018;97:205–27.
- Abhari S, Safdari R, Azadbakht L, Lankarani KB, Niakan Kalhori SR, Honarvar B, et al. A systematic review of Nutrition Recommendation systems: with Focus on Technical Aspects. J Biomedical Phys Eng. 2019;9(6):591–602.
- Kaur R, Kumar R, Gupta M. Food Image-based diet recommendation framework to overcome PCOS problem in women using deep convolutional neural network. Comput Electr Eng. 2022;103:108298.

- Mandal A, Saha D, Sarkar M, editors. Follicle Segmentation Using K-Means Clustering from Ultrasound Image of Ovary. Proceedings of International Conference on Frontiers in Computing and Systems; 2021 2021//; Singapore: Springer Singapore.
- Makhdoomi A, Jan N, Palak P, Goel N, editors. Machine learning techniques for medical images in PCOS. 2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST); 2022 9–10 Dec. 2022.
- Vedpathak S, Thakre V, PCOcare:. PCOS detection and prediction using machine learning algorithms. Biosci Biotechnol Res Commun. 2020;13:240–4.
- Xie J, Burstein F, Garad R, Teede HJ, Boyle JA. Personalized Mobile Tool AskP-COS delivering evidence-based Quality Information about polycystic ovary syndrome. Semin Reprod Med. 2018;36(1):66–72.
- Jiskoot G, Benneheij SH, Beerthuizen A, de Niet JE, de Klerk C, Timman R, et al. A three-component cognitive behavioural lifestyle program for preconceptional weight-loss in women with polycystic ovary syndrome (PCOS): a protocol for a randomized controlled trial. Reproductive Health. 2017;14(1):34.
- Lehtinen J-C, Forsström J, Koskinen P, Penttilä T-A, Järvi T, Anttila L. Visualization of clinical data with neural networks, Case study: polycystic ovary syndrome. Int J Med Informatics. 1997;44(2):145–55.
- Zhang H, Legro RS, Zhang J, Zhang L, Chen X, Huang H, et al. Decision trees for identifying predictors of treatment effectiveness in clinical trials and its application to ovulation in a study of women with polycystic ovary syndrome. Hum Reprod (Oxford England). 2010;25(10):2612–21.
- 23. Rethinavalli S, Manimekalai M. A novel hybrid framework for risk severity of polycystic ovarian syndrome. 2016;9:19–27.
- Cahyono B, Adiwijaya, Mubarok MS, Wisesty UN, editors. An implementation of convolutional neural network on PCO classification based on ultrasound image. 2017 5th International Conference on Information and Communication Technology (ICoIC7); 2017 17–19 May 2017.
- Dewi RM, Adiwijaya, Wisesty UN, Jondri. Classification of polycystic ovary based on ultrasound images using competitive neural network. J Phys: Conf Ser. 2018;971(1):012005.
- Thufailah IF, Adiwijaya, Wisesty UN, Jondri. An implementation of Elman neural network for polycystic ovary classification based on ultrasound images. J Phys: Conf Ser. 2018;971(1):012016.
- Boddu V, Bollineni A, Bhargav K, Sarangi S, Chilla M. Application of the Apriori Algorithm for Prediction of polycystic ovarian syndrome (PCOS). 2018. p. 934–44.
- Denny A, Raj A, Ashok A, Ram CM, George R, editors. i-HOPE: Detection And Prediction System For Polycystic Ovary Syndrome (PCOS) Using Machine Learning Techniques. TENCON 2019–2019 IEEE Region 10 Conference (TEN-CON); 2019 17–20 Oct. 2019.
- Adla YAA, Raydan DG, Charaf MZJ, Saad RA, Nasreddine J, Diab MO, editors. Automated Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques. 2021 Sixth International Conference on Advances in Biomedical Engineering (ICABME); 2021 7–9 Oct. 2021.
- Hassan M, Mirza T. Comparative Analysis of Machine Learning Algorithms in diagnosis of polycystic ovarian syndrome. Int J Comput Appl. 2020;Volume 175.
- Kodipalli A, Devi S. Prediction of PCOS and Mental Health using fuzzy inference and SVM. Front Public Health. 2021;9:789569.
- Lv W, Song Y, Fu R, Lin X, Su Y, Jin X, et al. Deep Learning Algorithm for Automated Detection of Polycystic Ovary Syndrome using scleral images. Front Endocrinol. 2021;12:789878.
- N.S N, Novel Hybrid RDA. Algorithm with Extreme Learning adaptive neurofuzzy inference system based follicle identification for polycystic ovary syndrome in Ultrasound images. Webology. 2021;18:594–616.
- 34. Zhang N, Wang H, Xu C, Zhang L, Zang T. DeepGP: an Integrated Deep Learning Method for Endocrine Disease Gene Prediction using. Omics Data. 2021;9.
- Hosain AS, Mehedi MHK, Kabir IE, editors. Pconet: A convolutional neural network architecture to detect polycystic ovary syndrome (pcos) from ovarian ultrasound images. 2022 International Conference on Engineering and Emerging Technologies (ICEET); 2022: IEEE.
- Zigarelli A, Jia Z, Lee H. Machine-aided self-diagnostic prediction models for polycystic ovary syndrome: Observational Study. JMIR Formative Res. 2022;6(3):e29967.

- Nsugbe E. An artificial intelligence-based decision support system for early diagnosis of polycystic ovaries syndrome. Healthc Anal. 2023;3:100164.
 McHugh ML. Interrater reliability: the kappa statistic. Biochemia Med.
- McHugh ML. Interrater reliability: the kappa statistic. Biochemia Med. 2012;22(3):276–82.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.