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Identification of cervical squamous cell 
carcinoma feature genes and construction 
of a prognostic model based 
on immune‑related features
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Abstract 

As heterogeneity of cervical squamous cell carcinoma (CSCC), prognosis assessment for CSCC patients remain chal-
lenging. To develop novel prognostic strategies for CSCC patients, associated biomarkers are urgently needed. This 
study aimed to cluster CSCC samples from a molecular perspective. CSCC expression data sets were obtained from 
The Cancer Genome Atlas and based on the accessed expression profile, a co-expression network was constructed 
with weighted gene co-expression network analysis to form different gene modules. Tumor microenvironment was 
evaluated using ESTIMATE algorithm, observing that the brown module was highly associated with tumor immunity. 
CSCC samples were clustered into three subtypes by consensus clustering based on gene expression profiles in the 
module. Gene set variation analysis showed differences in immune-related pathways among the three subtypes. 
CIBERSORT and single-sample gene set enrichment analysis analyses showed the difference in immune cell infiltra-
tion among subtype groups. Also, Human leukocyte antigen protein expression varied considerably among subtypes. 
Subsequently, univariate, Lasso and multivariate Cox regression analyses were performed on the genes in the brown 
module and an 8-gene prognostic model was constructed. Kaplan–Meier analysis illuminated that the low-risk group 
manifested a favorable prognosis, and receiver operating characteristic curve showed that the model has good pre-
dictive performance. qRT-PCR was used to examine the expression status of the prognosis-associated genes. In con-
clusion, this study identified three types of CSCC from a molecular perspective and established an effective prognos-
tic model for CSCC, which will provide guidance for clinical subtype identification of CSCC and treatment of patients.
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Introduction
Cervical carcinoma is the third most common cancer 
in the developing country [1]. As a gynecological malig-
nant tumor, cervical carcinoma ranks third in incidence 
among female malignancies with an increasing trend year 

by year, and its mortality ranks second [1, 2]. Cervical 
squamous cell carcinoma (CSCC) is the most common 
histological type of cervical carcinoma. The traditional 
therapeutic strategies including surgery, radiotherapy, 
chemotherapy, and targeted therapy have achieved great 
success, but some limitations remain yet. First, molec-
ular-based clustering system for cervical carcinoma is 
remains imperfect, and specific targeted treatment is 
challenging [3]. Second, effective therapeutic strategies 
for patients with advance and recurrent cervical carci-
noma are still insufficient. Therefore, further research 

Open Access

*Correspondence:  lujjjjuuun@163.com

4 Obstetrics and Gynecology Department, Lishui Hospital of Traditional 
Chinese Medicine, #800 Zhongshan Road 323000, Lishui, Zhejiang, People’s 
Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12905-022-01942-4&domain=pdf


Page 2 of 13He et al. BMC Women’s Health          (2022) 22:365 

on cervical carcinoma typing and finding biomarkers are 
necessary and vital for the accurate prediction and effec-
tive targeted treatment of cervical carcinoma.

Immunotherapy based on immune checkpoint inhibi-
tors is becoming a hot topic in the field of cancer treat-
ment [4]. Increasing evidence have suggested the 
correlation between immunotherapy and the abun-
dance of immune cell infiltration [5, 6]. A study showed 
that higher number of infiltrating regulatory T cells 
in PD-L1 positive tumors pertains to better prognosis 
[7]. Moreover, the presence of PD-L1 + tumor-asso-
ciated macrophages was associated with significantly 
poorer disease-free survival in cervical adenocarcinoma 
patients, which provides a reference for the application 
of PD-L1 in the immunotherapy of cervical carcinoma 
[8]. As the application of immunotherapy in cervical 
carcinoma treatment is related to immune cell infiltra-
tion in the TME, the identification of immune infiltration 
features has important reference value for evaluation of 
immunotherapy and development of prognostic features. 
ESTIMATE algorithm used in this study could compre-
hensively evaluate sample immune status according to 
gene profile, where Stromal Score, Immune Score, Esti-
mate Score, and Tumor Purity would be scored for the 
tested sample.

In recent years, findings in molecular subtypes of can-
cer is providing strong support for the development of 
clinical treatment. Li et  al. [9] identified and verified 6 
molecular subtypes of squamous cell carcinoma with 
different molecular characteristics and clinical informa-
tion. These subtypes represent different levels of immune 
cell infiltration, and the subtype dominated by M2 mac-
rophage polarization is associated with immunosuppres-
sive factors and indicates a poor prognosis. Zhang et al. 
[10, 11] explained the heterogeneity of breast cancer by 
the consensus clustering of methylation-related CpG 
islands in breast cancer dataset and identified 9 subtypes 
reflecting different DNA methylation patterns, includ-
ing Luminal-B breast cancer related to local recurrence. 
In another study, triple-negative breast cancer is divided 
into 4 transcriptome-based subtypes, including luminal 
androgen receptor (LAR), immunomodulatory, basal-
like immune-suppressed, and mesenchymal-like. This 
study revealed the drug treatments for each subtype and 
demonstrated the guidance of frequent aberrant muta-
tions of CDKN2A oncogene and somatic cells in LAR 
subtype [12]. These results demonstrated the impor-
tance of revealing molecular subtypes for precise cancer 
treatment.

In the present study, weighted gene co-expression net-
work analysis (WGCNA) was used to analyze the gene 
set in The Cancer Genome Atlas (TCGA) database. 
Together with ESTIMATE analysis, WGCNA provided 

gene modules with different expression patterns, as well 
as immune-related module genes. The genes in the mod-
ule were classified into three immune subtypes by con-
sensus clustering. Gene set variation analysis (GSVA), 
immune infiltration, HLA protein expression analysis, 
and ESTIMATE scores all supported the rationality of 
the subtyping, that is, each subtype represents a specific 
immune pattern. In addition, based on the regression and 
survival analyses of genes in the target module, this study 
constructed and validated the CSCC risk assessment 
model based and revealed the correlation between the 
model and immune cell infiltration. The classification of 
CSCC subtypes will lay a foundation for stratified clinical 
identification of CSCC and accurate prediction of disease 
recurrence, and the corresponding prognostic model can 
provide guidance for relating clinical immunotherapy.

Materials and methods
Data source
The mRNA expression transcript (in the form of FRKM) 
of CSCC in The Cancer Genome Atlas-Cervical Squa-
mous Cell Carcinoma (TCGA-CESC) dataset were 
downloaded from TCGA database (https://​portal.​gdc.​
cancer.​gov/) as well as clinical data, including 255 tumor 
samples and 2 normal samples.

Analysis of immune microenvironment
Immune cells and stromal cells are two major non-tumor 
constituents in the tumor microenvironment (TEM). The 
evaluation of their expression is helpful to further eval-
uate the tumor purity in the tissue, showing a value for 
tumor diagnosis and prognostic assessment. The R-pack-
age ESTIMATE [13] was used to acquire the immune 
score and stromal score of tumor samples based on 
gene transcription. The indices related to cell immunity, 
including Immune Score, Stromal Score, ESTIMATE 
Score and Tumor Purity were obtained.

Construction of WGCNA
WGCNA was constructed based on clustering genes 
with similar expression pattens and then merging them 
into modules; Subsequently, the modules of interest were 
screened via correlation analysis of module eigengene 
(ME) and indicators of interest. Analysis of target module 
genes and related traits was conducive to the screening of 
hub genes [14]. Firstly, 80% of genes in TCGA-CESC with 
0 expression were eliminated, and the genes with the top 
25% median absolute deviation (MAD) were retained. 
The sample clustering tree was constructed, and the out-
liers were removed. Finally, 4,553 genes from 253 samples 
were enrolled as the objects for subsequent research. The 
similarity matrix was constructed using Pearson correla-
tion analysis and converted into the weighted adjacency 
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matrix by power function. The range of soft threshold 
β was set to 1–20, and the scale-free topology criterion 
was that the correlation between average module con-
nectivity (K) and p (k) was 0.85. The optimal soft thresh-
old power was filtered to construct a scale-free topology 
network, and the adjacency matrix was converted into 
the topological overlap matrix (TOM). Finally, the lower 
limit of module gene was set to 50 and the threshold of 
dissimilarity was set to 0.25. Hierarchical clustering was 
carried out based on TOM dissimilarity to merge highly 
similar gene modules.

Screening of gene modules highly related to TME 
and functional annotations
In principal component analysis of each module, the 
principal components were composed of MEs, which 
represent the gene expression profile of each module. 
To screen gene modules highly correlated with tumor 
immune-related features, four indicators, Immune Score, 
Stromal Score, ESTIMATE Score and Tumor Purity 
obtained by ESTIMATE algorithm were used as clinical 
traits to calculate the correlation coefficients between 
features and MEs of each module through Pearson cor-
relation analysis. Finally, target modules significantly 
related to clinical features were screened. To further 
reveal the biological functions of genes in the target mod-
ule, the genes were submitted to Metascape (http://​metas​
cape.​org) database for functional analysis, and the default 
parameters were used [15–17].

Consensus clustering analysis of samples
K-means consensus clustering analysis of TCGA-CESC 
samples was performed by using ConsensusClusterPlus 
package based on the expression matrix of the mod-
ule genes [18]. To find the optimal clustering number K 
making the clustering results stable, a double sampling 
scheme was adopted with 80% sampling each time and 
1,000 repetitions. The optimal clustering number was 
selected to further cluster TCGA-CESC tumor samples.

GSVA and ssGSEA in different clustering groups
The differences in the biological pathways of differ-
ent clustering sample groups were explored using the 
R-package GSVA for GSVA enrichment analysis [19]. 
Differential expression analysis (|logFC|> 0.1; FDR < 0.05) 
was performed using R-package limma. ssGSEA was per-
formed on the mRNA data in different clustering groups 
using R-package GSVA. The immune cell gene set in this 
process was derived from the existing literature [20] and 
contains the mRNA expression of T cells, B cells, mac-
rophages, natural killer cells, monocytes, etc.

Construction of a prognostic model
Univariate Cox regression analysis was performed on 
the genes in the target module using R-package survival 
(P < 0.01). On this basis, the prognostic feature genes 
were obtained by Lasso and multivariate Cox regres-
sion analyses, and the multivariate regression model 
was constructed. Based on the expression level of each 
gene and the risk coefficient, the risk score of patients 
was calculated, and the prognostic risk assessment 
model was constructed.

In the formula, n is the number of prognostic feature-
related genes in model, expi is the expression of each 
feature gene, and βi is the corresponding multivariate 
Cox regression coefficient of each feature gene.

Kaplan–Meier survival analysis was performed on 
high/low-risk groups with median risk score as the 
critical value [21]. The results were visualized using 
R-package survminer [22]. The receiver operating char-
acteristic (ROC) curves were plotted using R-package 
survival ROC to calculate the AUC values of 1-, 3-, 5- 
year overall survival. Finally, the contents of B cells, 
CD8 + T cells, CD4 + T cells, dendritic Cells, neutro-
phils, and macrophages in each TCGA-CESC sample 
were obtained from the TIMER website (https://​cistr​
ome.​shiny​apps.​io/​timer/). Pearson correlation analysis 

(1)Risk Score =

n

i=1

expi ∗βi

Table 1  Primer list

GENE PRIMERS

ISCU F:ATA​TCG​CCA​AGG​AGC​TCT​GC

R:CTT​CAG​CCA​GCA​CAT​CCA​GA

MSMO1 F:GTT​CCG​AGG​TTG​GAA​CAC​CT

R:TCT​GGC​TTA​TCC​TGA​ACG​GC

GCH1 F:TTG​CGT​ACC​TTC​CTC​AGG​TG

R:CCG​GAC​AGA​CAG​ACA​ATG​CT

EEFSEC F:AAC​CAA​GGC​CAA​GTT​CCA​CA

R:GAT​CTT​CTT​GGA​CTC​GGG​GC

SPP1 F:AGC​AGC​TTT​ACA​ACA​AAT​ACC​CAG​

R:TAC​TTG​GAA​GGG​TCT​GTG​GG

RHOG F: GAG​GGC​ACC​AGG​TCA​CTG​

R:CTC​TGC​GCG​CTG​TAA​TTG​TC

LSP1 F:GGT​TCA​GGC​TTC​AGT​CCC​AG

R:GGC​CTG​GGT​GTA​TTG​TTC​CA

TCN2 F:GGT​TCA​GGC​TTC​AGT​CCC​AG

R:GGC​CTG​GGT​GTA​TTG​TTC​CA

GAPDH F:AAT​GGG​CAG​CCG​TTA​GGA​AA

R:GCG​CCC​AAT​ACG​ACC​AAA​TC

http://metascape.org
http://metascape.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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was performed to analyze the correlation between risk 
scores and the degree of immune cell infiltration.

Sample collection and qRT‑PCR
The tumor and corresponding adjacent tissues of 15 
cervical squamous cell carcinoma patients were col-
lected from The First People’s Hospital of Jiashan from 
May 2019 to May 2021. All the patients signed the 
informed consent. The collected tissues were stored at 
-80℃ to be processed by qRT-PCR assay.

Trizol (ThermoFisher, USA) was used to isolated total 
RNA. The extracted RNA was used to synthesize cDNA 
using PrimeScirpt RT reagent Kit (Takara, Japan). Based 
on the obtained cDNA, quantitative PCR was carried 
out by SYBR Green qPCR Master Mix (MedChemEx-
press, USA). GAPDH was selected as endogenous refer-
ence. The used primers were listed below (Table 1). The 
relative expression was calculated by 2−ΔΔCT method.

Results
Construction of CSCC gene co‑expression network 
and screening of immune‑related module
Firstly, the unqualified samples and genes in the 
TCGA-CESC dataset were removed based on hierar-
chical clustering, and 253 samples and 4,553 genes were 
reserved for WGCNA to build the gene co-expression 
network. β = 3 (scale-free R2 = 0.92) was selected as 
an optimal soft threshold to construct a scale-free 
network, and finally 15 gene modules were obtained 
(Table  1). Then, the correlation between the feature 
genes of each module and four immune-related fea-
tures (Stromal, Immune, Estimate Scores, and Tumor 
Purity) was calculated. It was found that brown mod-
ule was significantly associated with immune status, 
presenting Immune Score (r = 0.88, P = 1e-84), Stromal 
Score (r = 0.46, P = 1e-14), ESTIMATE Score (r = 0.79, 
P = 2e-55) and Tumor Purity (r = -0.82, P = 1e-63) 

Fig. 1  The immune-related modules based on WGCNA

(See figure on next page.)
Fig. 2  Enrichment analysis of genes in the brown module. A P value distribution of the top 20 enriched pathways and biological processes in the 
brown module; B The P value clustering network of genes in the brown module, with the redder the node color is, the more significant P value is; 
C Network analysis of enriched terms of genes in the brown module. Different node colors indicate different functional or pathway clusters that 
nodes belong to
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Fig. 2  (See legend on previous page.)
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(Fig.  1). Therefore, the brown module was included in 
the subsequent study.

Enrichment analysis of module genes
Enrichment analysis was performed on 330 genes in the 
brown module to reveal relevant biological function. The 
results showed that the genes were largely enriched in the 
functions and pathways related to immune signal activation 
and immunomodulation, such as response to interferon-
gamma, positive regulation of immune response, adaptive 

immune response, regulation of cytokine production, mye-
loid leukocyte activation, regulation of response to biotic 
stimulus, T cell activation, inflammatory response, negative 
regulation of immune system process, Type II interferon 
signaling (IFNG), Lysosome, response to tumor necrosis 
factor, regulation of viral process, etc. (Fig. 2A–C).

Classification of tumor sample subtypes
The brown module was known to be highly correlated 
with cellular immunity. In the present study, consensus 

Fig. 3  Consensus clustering analysis of gene expression pattern in the brown module. A Cumulative distribution function (CDF) of consensus 
clustering when K = 2 ~ 9; B Relative change of AUC of CDF curve when K = 2 ~ 9; C Tracking plot results of consensus clustering when K = 3; D Heat 
map of gene expression in different subtypes in the brown module
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clustering was conducted on tumor samples based on 
the expression patterns of genes in the brown module to 
identify different immune subtypes. Since the grouping 
was suboptimal when using K = 3 as the clustering value, 
we selected K = 3 to divide the samples into three groups 
(Fig. 3A–C). The samples obtained were named as cluster 
A (38 cases), cluster B (132 cases) and cluster C (84 cases). 
To better understand the immune patterns of the three 
subgroups, we explored the expression of genes in the 
brown module in the three subgroups (Fig. 3D). The results 
showed that most of the genes in the brown module were 
down-regulated in the cluster B subgroup, while most of 
the genes were up-regulated in the other two subgroups, 
and the overall level of gene up-regulation in the cluster A 
subgroup was more evident than that in the cluster C sub-
group. Therefore, we assumed that the three subgroups 
might represent different immune patterns, which was fur-
ther verified by subsequent analysis.

GSVA of different tumor subtypes
GSVA was done to explore the biological behaviors of the 
three tumor immune subtypes. Cluster A enriched in the 
pathways associated with immune deficiency and disease 
development, such as PRIMARY IMMUNODEFICIENCY, 
TYPE I DIABETES MELLITUS, INTESTINAL IMMUNE 
NETWORK FOR IGA PRODUCTION, ALLOGRAFT 
REJECTION, etc. Cluster B was enriched in pathways 
related to immunosuppressive biological processes. Clus-
ter C was mainly enriched in pathways associated with 
cell adhesion, cytokine and cytotoxic activation pathways, 

including CYTOSOLIC DNA SENSING PATHWAY, 
CELL ADHESION MOLECULES CAMS, HEMATOPOI-
ETIC CELL LINEAGE, CYTOKINE NATURAL KILLER 
CELL MEDIATED CYTOTOXICITY, CYTOKINE 
RECEPTOR INTERACTION, etc. (Fig.  4). These results 
indicated that the three subtypes have different enrich-
ments in biological pathways, and it was speculated that 
these subtypes may have different biological behaviors.

Immune feature analysis and classification validation 
of different tumor subtypes
The analysis of cell infiltration in TME showed that there 
were differences in the contents of B cells, T cells, NK cells, 
monocytes and macrophages among the three subtypes 
(Fig.  5A). ssGSEA results showed significant differences 
in CD8 T cells, CD4 T cells, Treg cells, macrophage MD, 
M1 and dendritic cell contents among the three subtypes 
(Fig.  5B). To further verify the classification, ESTIMATE 
was used to calculate Stromal Score, ESTIMATE Score, 
Immune Score, and Tumor Purity based on mRNA data. 
These indicators were used to distinguish the high, low and 
medium immune groups. Compared with low immune 
cell infiltration group, the high immune cell infiltration 
group had lower Tumor Purity and higher Stromal Score, 
Immune Score and ESTIMATE Score. Therefore, Clus-
ter A was defined as high immune group, Cluster B as low 
immune group, and Cluster C as medium immune group 
(Fig. 5C). High immune group was significantly positively 
correlated with ESTIMATE Score, Immune Score and 
Stromal Score, but negatively correlated with Tumor Purity 

Fig. 4  Heat maps of GSVA among different subtypes. Red: up-regulated pathways; green: down-regulated pathways
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(Fig. 5D). human leukocyte antigen (HLA) is an expression 
product of human major compatibility complex and is also 
a highly polymorphic allogeneic antigen [23]. In the present 
study, the correlation between immune cell infiltration and 
HLA family proteins in different subgroups was analyzed 
to verify the rationality of typing. The results demonstrated 
that the expression of HLA family gene was significantly 
downregulated in high immune group compared with in 
low immune group (Fig.  5E). The above results indicated 
that there were differences in the immune cell infiltration, 
immune-related scores and HLA family protein expres-
sion among subtypes, which also provided support for the 
rationality of the typing.

Construction and assessment of prognostic model 
and analysis of immune infiltration
Subsequently, a prognostic model was constructed based 
on the genes in the brown module. In the TCGA-CESC 
dataset, the samples with survival time less than 30  days 
were excluded. Then, for the 330 genes in the brown mod-
ule, a univariate regression analysis was conducted, and 46 
genes significantly associated with prognosis were obtained 
with P < 0.01 as the screening condition (Additional file 1: 
Table  S1). Next, lasso and multivariate regression analy-
ses were done on these 46 genes, and 8 feature genes were 
obtained finally, including ISCU, MSMO1, GCH1, EEF-
SEC, SPP1, RHOG, LSP1 and TCN2 (Fig. 6A, Additional 
file  2: Table  S2). HRs of MSMO1 and SPP1 were higher 
than 1, which were risk factors for CSCC prognosis, while 
HRs of ISCU, GCH1, EEFSEC, RHOG, LSP1 and TCN2 
were lower than 1, which could be protective factors for 
CSCC prognosis. The risk scores were calculated based on 
these 8 feature genes, and the samples were classified into 
high-risk and low-risk groups. According to the heat map, 
the expression levels of GCH1, EEFSEC, SPP1, RHOG, 
LSP1 and TCN2 were decreased overall with the increase 
of risk score (Fig. 6B). Based on the risk score distribution 
and survival time of the high/low-risk group samples, we 
found that the number of patients dying increased and 
the survival time decreased with the increase of risk score 
(Fig.  6C–D). Survival curves of the high/low-risk groups 
also demonstrated that patients in the low-risk group had 

Fig. 5  Analysis of immune cell infiltration and immune-related 
indices in different tumor subtypes. A CIBERSORT analysis of 
differences in immune cell composition among different subtypes; B 
Differences in the abundance of each immune infiltrating cell among 
different subtypes; C Heat map of immune cell typing; D Violin plot 
of the differential analysis of Tumor Purity, ESTIMATE Score, Immune 
Score and Stromal Score among the three subtypes; E Differences in 
the expression of HLA family gene among different subtypes

▸
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a higher survival rate (Fig. 6E). ROC curve demonstrated 
the reliability of the risk assessment model in predicting 1-, 
3- and 5- year survival rates of samples, with AUC values 
of 0.8, 0.77 and 0.75 respectively (Fig. 6F). Also, the expres-
sion statuses of the 8 genes were examined using qRT-PCR, 
whose results showed that ISCU was downregulated, while 
MSMO1, GCH1, EEFSEC were upregulated in the tumor 
tissues (Fig.  6G). In addition, this study assessed the cor-
relation between the prognostic model and immune cell 
infiltration. As a result, the risk score was significantly 
negatively correlated with 6 immune cells, including B_ 
cell, CD8_ T cell, CD4_ T cell, neutrophil, dendritic cell 
and macrophage (Fig.  7A–F). To verify whether the risk 
score could be considered as an independent prognostic 
indicator, univariate and multivariate Cox regressions were 
introduced based on risk score and clinical features of the 
samples. As observed in Fig. 7G–H, risk score could inde-
pendently serve as prognostic factor. In conclusion, we 
constructed an 8-feature gene risk assessment model to 
predict the prognosis of patients with CSCC and proved 
the favorable predictive ability of this model and revealed 
the association between the model and cellular immunity.

Discussion
Immunotherapy is being used for a growing number of 
cancers. For example, Brahmer et al. [24] found that the 
efficacy and safety of nivolumab are better than docetaxel 
in treating patients with advanced squamous non-small 
cell carcinoma. Since high mutational burden in blad-
der cancer patients, immunotherapy, especially using 
anti-PD-1/PDL-1 antibodies, is understood as an opti-
mal therapeutic option [25]. In KEYNOTE-045 phase 
3 trial, anti-PD-1 immunotherapy evidently presented 
its strength on improving the prognosis of bladder can-
cer patients compared to chemotherapy [25]. It was also 
demonstrated that cancer immunotherapy needs to be 
improved in terms of pertinence. In view of the close cor-
relation between TME and immunotherapy, it is neces-
sary to systematically understand the tumor immune 

Fig. 6  Construction and assessment of a prognostic model for CSCC. 
A Forest map of the 8-prognostic feature genes, *P < 0.05; B Heatmap 
of expression of the 8 prognostic feature genes in the high- and 
low-risk groups; C Risk score distribution of CSCC patients, with green 
representing the low-risk group and  red representing the high-risk 
group; D Scatter plot of survival status of CSCC patients, with green 
and  red dots representing survival and death, respectively; E Kaplan–
Meier survival curve of the high- and low-risk groups; F ROC curves of 
the prognostic model predicting 1-, 3-, and 5-year overall survival of 
patients.; G qRT-PCR was used to measure the mRNA expressions of 
the feature genes

▸
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pattern [5, 6]. In the present study, a co-expression net-
work of CSCC sample genes was constructed using 
WGCNA, and the brown gene module highly associated 
with immunity was screened by combining with immune 
traits was obtained from ESTIMATE. Subsequently, the 
samples were classified into three subtypes by consensus 
clustering based on their gene expression profiles. Due to 
the different expression patterns of genes in the module 
among subtypes, it was preliminarily revealed that the 
three subtypes may represent different immune patterns. 
The results provide reference for the recognition of CSCC 
immune pattern and may have important significance for 
the development of personalized immunotherapy.

The correlation between TME and the immune fea-
tures of tumor subtypes had been demonstrated in a vari-
ety of cancers. Thorsson et  al. [26] identified 6 immune 
subtypes: IFN-γ dominant, wound healing, inflamma-
tory, immunologically quiet, lymphocyte depleted, and 
TGF-β dominant, which are established based on dif-
ferences in macrophage and lymphocyte invasion levels, 
Th1:Th2, and tumor purity in the microenvironment. 
Another study evaluated the characteristics of molecular 
subtypes of colorectal cancer, including T cell infiltration 
and macrophage polarization, and identified the ability 
of subtypes to stratify disease [27]. To verify the differ-
ences in immune features between CSCC subtypes, this 
study assessed the infiltration of immune cells among 
subtypes, and divided the samples into high, medium, 
and low immune groups based on the immune traits 
calculated by ESTIMATE. The high immune group was 
significantly and positively correlated with ESTIMATE 
Score, Immune Score and Stromal Score but negatively 
correlated with Tumor Purity. In term of cancer therapy, 
HLA locus plays a key role in tumor recognition [28]. We 
also analyzed the expression of HLA family genes among 
subtypes. It was found that there were significant differ-
ences between groups, and the expression of the genes 
was significantly downregulated especially in the high 
immune group. Moreover, Li’s work performed similar 
result as we presented in our study [9], and based on his 
work, we additionally constructed a prognostic model. 
These results indicated the differences in immune fea-
tures among the three CSCC subtypes and confirmed 
the rationality of these subtypes representing different 
immune patterns.

This study constructed a risk assessment model for 
CSCC based on 8 prognostic genes according to the 

MEs highly associated with immunity. MSMO1 and 
SPP1 can be used as adverse prognosis factors for 
CSCC, while ISCU, GCH1, EEFSEC, RHOG, LSP1 and 
TCN2 can be used as prognostic protective factors. 
MSMO1 is involved in the human cholesterol synthe-
sis pathway and silencing of this gene is directly asso-
ciated with decreased cell proliferation rate, especially 
in estrogen receptor-positive breast cancer [29]. SSP1 
is associated with tumor immunity and can be directly 
related to the up-regulation of PD-1 to mediate mac-
rophage polarization, thus promoting immune escape 
of tumor tissue [30]. ISCU is a gene associated with fer-
roptosis, and the downregulation of this gene in tissue 
is generally beneficial to tumor growth, which is con-
sistent with the results of this study [31]. It was inves-
tigated that the inactivation of GCH1, a GTP cyclase 
hydrolase, seriously damages T cell activation in mouse 
and human immune systems [32]. EEFSEC may affect 
cancer risk by influencing human resistance to arsenic 
exposure [33]. Both RHOG and LSP1 are key regula-
tors of cell proliferation and migration and play a criti-
cal role in regulating aggressive cancer cells, such as 
glioblastoma cells [34]. TCN2 plays a critical role in 
reversing the hypoxia microenvironment caused by 
cancer cells, which explains its existence as a protec-
tive factor for CSCC in this study [35]. In view of the 
functions of these genes in tumor immunity and can-
cer development, the present paper further investi-
gated the correlation between the corresponding risk 
assessment model and cellular immunity. The results 
showed a negative correlation between the risk score 
and the infiltration of 6 types of immune cells, namely 
B cell, CD8 T cell, CD4 T cell, macrophage, dendritic 
cells and neutrophil. The high abundance of these cells 
in the immune microenvironment is generally associ-
ated with favorable prognosis and immunity [36–38]. 
Taking T cells as an example, it is generally regarded 
as a typically key participant in immune checkpoint 
blocking therapy [39]. Cancer immunotherapies such 
as vaccines and checkpoint blocking can promote the 
autoimmune response of the body and enhance T and 
B cell responses [40, 41]. Therefore, the regulation of 
the 8 immune-related genes identified in the present 
study may lead to poor prognosis of patients by linking 
immunosuppression.

However, this study was a pure bioinformatics analy-
sis and had limitations. Firstly, data acquisition was 

Fig. 7  Correlation between risk score and infiltration degree of 6 immune cells. A Correlation between risk score and B_cell infiltration; B 
Correlation between risk score and CD4 T cell infiltration; C Correlation between risk score and CD8 T cell infiltration; D Correlation between risk 
score and dendritic cell infiltration; E Correlation between risk score and macrophage infiltration; F Correlation between risk score and neutrophil 
infiltration. G–H Univariate and multivariate Cox regression for risk score and the clinical features

(See figure on next page.)
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completely dependent on public databases. This inevi-
tably led to systematic errors between databases, so 
more accurate RNA sequencing is needed for verifi-
cation. Secondly, this study found three CSCC sub-
types that could represent different immune patterns 
but lacked experiments in  vitro to verify the immune 
behavior of each type. Finally, even if the CSCC risk 
assessment model was found to be related to the infil-
tration of immune cells, this study cannot prove that 
the prognostic genes can cause poor prognosis through 
immunosuppression, which requires a combination of 
experimental basis and clinical evidence.

In conclusion, this study screened the immune-
related gene set associated with CSCC using a gene 
co-expression network combining ESTIMATE analy-
sis. Based on consensus clustering of gene sets, the 
samples were divided into three subtypes representing 
independent immune patterns. A CSCC prognostic risk 
assessment model was constructed and validated on 
the basis of regression analysis, survival analysis and 
immune infiltration analysis of related gene sets. How-
ever, several limitations remain in our study, for one of 
the concerned points is lack of clinical validation. To 
validate in clinical manner, we are planning to estab-
lish bladder cancer sample library for further research. 
These results will provide guidance for accurate classifi-
cation and clinical treatment of CSCC.
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