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Abstract 

Background Endometriosis (EMS) occurs when normal uterine tissue grows outside the uterus and causes chronic 
pelvic pain and infertility. Endometriosis-associated infertility is thought to be caused by unknown mechanisms. In 
this study, using necroptosis-related genes, we developed and validated multigene joint signatures to diagnose EMS 
and explored their biological roles.

Methods We downloaded two databases (GSE7305 and GSE1169) from the Gene Expression Omnibus (GEO) data-
base and 630 necroptosis-related genes from the GeneCards and GSEA databases. The limma package in Rsoftware 
was used to identify differentially expressed genes (DEGs). We interleaved common differentially expressed genes 
(co-DEGs) and necroptosis-related genes (NRDEGs) in the endometriosis dataset. The DEGs functions were reflected 
by gene ontology analysis (GO), pathway enrichment analysis, and gene set enrichment analysis (GSEA). We used 
CIBERSORT to analyze the immune microenvironment differences between EMS patients and controls. Furthermore, 
a correlation was found between necroptosis-related differentially expressed genes and infiltrating immune cells 
to better understand the molecular immune mechanism.

Results Compared with the control group, this study revealed that 10 NRDEGs were identified in EMS. There were 
two types of immune cell infiltration abundance (activated NK cells and M2 macrophages) in these two datasets, 
and the correlation between different groups of samples was statistically significant (P < 0.05). MYO6 consistently 
correlated with activated NK cells in the two datasets. HOOK1 consistently demonstrated a high correlation with M2 
Macrophages in two datasets. The immunohistochemical result indicated that the protein levels of MYO6 and HOOK1 
were increased in patients with endometriosis, further suggesting that MYO6 and HOOK1 can be used as potential 
biomarkers for endometriosis.

Conclusions We identified ten necroptosis-related genes in EMS and assessed their relationship with the immune 
microenvironment. MYO6 and HOOK1 may serve as novel biomarkers and treatment targets in the future.
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Introduction
Endometriosis occurs when endometrial glands and 
stroma appear outside the uterine cavity [1]. The pre-
dicted prevalence of this disease at reproductive age is 
10% [2]. Endometriosis reduces women’s health-related 
quality of life (HRQOL), resulting in impairments in 
physical functioning, diminished social life, difficulties 
in intimate relationships, and decreased productivity. 
The endometriosis etiology is complex, involving mul-
tiple genetic and environmental risk factors. Although 
the endometriosis pathogenesis is relatively unclear, it is 
believed to be caused by retrograde menstruation leading 
to exfoliated endometrium implantation. However, there 
are limited studies on the development of endometrio-
sis, endometrial-peritoneal attachments, and invasion. 
Endometriosis is difficult to diagnose without biomarkers 
to detect or rule out [3]. Biomarkers and novel therapies 
targeting the diverse physiological mechanisms asso-
ciated with the onset, progression, and persistence of 
endometriosis symptoms are urgently required [4].

Necroptosis, also known as necroptosis, is a receptor-
interacting serine/threonine protein kinase 1 (RIPK1), 
RIPK3, and mixed lineage kinase domain-containing 
pseudo kinase (MLKL), but is not Caspase-1 depend-
ent [5]. Necroptosis has been implicated as a critical cell 
death pathway in cancers, Alzheimer’s, other neurode-
generative diseases, and virus-infected cells [6]. Some 
studies have identified necroptotic modulators as possi-
ble prognostic biomarkers for cancer and certain diseases 
[7, 8]. Day et  al. [9] found that BMI1 in ovarian cancer 
can participate in the PINK1-Park2-dependent mito-
chondrial pathway and induce a new type of non-apop-
tosis cell death mediated by necroptosis. Endometriosis 
severity is related to apoptosis, which usually destroys 
ectopic and heterotopic endometrial cells before form-
ing necrotic tissue, thus inhibiting their migration and 
accumulation [10, 11]. Moreover, apoptotic mechanisms 
in the cytoplasm and cellular inflammasomes can fur-
ther interact with ERβ-induced immune surveillance. 
However, the mechanism and function of necroptosis in 
endometriosis progression remains unclear.

Growing evidence suggests that the immune system 
is vital to the pathophysiology and symptoms of EM. 
Immune cells such as natural killer (NK) cells, mac-
rophages, neutrophils, and CD4 T helper cells are dys-
regulated in women with EM [12, 13]. Immune-related 
mechanisms have been described as involved in the 
pathophysiology and symptomatology of EMS by con-
tributing to the survival and persistence of endometrio-
sis lesions [14]. Immune dysfunction is associated with 
the implantation, proliferation, and apoptosis of ectopic 
endometrium. However, in women with endometriosis, it 
is unclear which subtypes of immune cells are presented 

in the ectopic endometrium. Analyzing the relationship 
between necroptosis and immune infiltration may help to 
explore unknown mechanisms. Recently, in a meta-anal-
ysis of transcriptomes using the xCell algorithm, immune 
profiles in eutopic endometriosis and stages I–II and III–
IV endometriosis were significantly different, regardless 
of the hormone [12]. Therefore, exploring immune mech-
anisms in endometriosis is key to elucidate their role 
in endometriosis pathogenesis and generating unique 
insights for developing preventive and therapeutic strate-
gies, innovative noninvasive diagnostic methods, and tar-
geted therapies.

This study explored potential biomarkers of endome-
triosis and their biological effects on the pathogenesis 
of endometriosis. We used the gene expression datasets 
GSE11691 and GSE7305 associated with normal and 
ectopic endometrium, respectively, which were extracted 
from the Gene Omnibus (GEO) database. Differential 
genes were screened and intersected with necroptosis-
related genes. Subsequently, the immune microenviron-
ment was compared between endometriosis patients and 
controls using CIBERSORT, and immune cell association 
was calculated with NRDEGs for the first time. We per-
formed a bioinformatics analysis of endometriosis to elu-
cidate the endometriosis pathogenesis further.

Materials and methods
Downloading data
We downloaded endometriosis-related datasets GSE7305 
[15] and GSE1169 from GEO database [16] through R 
package GEOquery [17]. GSE7305 dataset, which comes 
from Homo Sapiens and the data platform is GPL570, con-
tains 20 samples, including 10 endometriosis and 10 nor-
mal samples. Moreover, GSE11691 dataset, from Homo 
Sapiens and data platform GPL96, contained 18 samples, 
nine of which were endometriosis and nine normal. All 
samples from two datasets were included in the study.

The GeneCards database [18] provides comprehensive 
information on human genes. Necroptosis-related genes 
were obtained using the word "necroptosis" as the search 
keyword in GeneCards and GSEA databases [19]. A total 
of 630 necroptosis-related genes were obtained after 
merging and deduplication (Table S1).

Analysis of differentially expressed genes associated 
with endometriosis
To identify possible mechanisms and pathways associ-
ated with differential gene expression in endometriosis, 
R package limma was used to standardize the datasets 
GSE7305 and GSE11691, and the expression profile data 
after processing were analyzed differently. DEGs between 
different subgroups were obtained from two endome-
triosis datasets, |logFC|> 0.5 and P.adj < 0.05, which were 
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used as standards to further screen the DEGs involved 
in this study. Among them, genes with logFC > 0.5 
and p.adj < 0.05 were upregulated DEGs. Genes with 
logFC < -0.5 and p.adj < 0.05 were downregulated DEGs.

To obtain the necroptosis-related differentially 
expressed genes (NRDEGs) of endometriosis, we first 
intersected all differentially expressed genes with 
|logFC|> 0.5 and P.adj < 0.05 obtained from the differen-
tial analysis of dataset GSE7305 and dataset GSE11691 
and plotted the Venn diagram to visualize the common 
differentially expressed genes of the dataset. Venn dia-
grams were then used to visualize the co-DEGs inter-
section and necroptosis-related genes between the two 
datasets. The difference analysis results were displayed by 
volcano map using R package ggplot2, and a heatmap was 
drawn using R package pheatmap.

Functional enrichment analysis
Gene ontology (GO) [20, 21] analysis is a common 
method for large-scale functional enrichment studies, 
including biological processes (BP), molecular functions 
(MF), and cellular components (CC). The R package clus-
terprofiler [22] was used for GO analysis of NRDEGs. To 
qualify for entry, the screening criteria were a P-value of 
0.05 and an FDR value (Q value) of 0.05, which was con-
sidered statistically significant. The P-value correction 
method was Benjamini-Hochberg (BH).

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) [23] was used 
to evaluate the correlation between genes from a pre-
defined Gene Set and phenotypes in the Gene Table to 
measure its phenotypic contribution. In this study, genes 
in GSE7305 dataset (Table  2) and GSE11691 dataset 
(Table  3) were divided into high- and low-phenotypic 
correlations according to the ranking of the pheno-
typic correlation degree. The R package clusterProfiler 
enriched and analyzed all DEGs in the two groups. Fol-
lowing are the parameters used in this GSEA: The seed 
was 2020, the number of calculations was 1000, the mini-
mum number of genes in each gene set was 10, and the 
maximum number of genes was 500. The correction 
method for the P-value was Benjamini-Hochberg (BH). 
The Molecular Signatures Database (MSigDB) [24] pro-
vided the C2.cp.v7.2. symbol gene set and the screening 
criteria for significant enrichment were P < 0.05 and FDR 
value (Q value) < 0.25.

PPI, mRNA‑miRNA, mRNA‑TF, mRNA‑Drug interaction 
network
Protein–protein interactions (PPI) are composed 
of individual proteins. The STRING database [25] 

searches for interactions between predicted and known 
proteins. This study used the STRING database to con-
struct a protein–protein interaction network related 
to differentially expressed genes (minimum required 
interaction score: low confidence (0.150). The PPI net-
work model was visualized using Cytoscape [26] soft-
ware (version 3.9.1).

Using the Starbase (Version 3.0) database [27], we 
searched for miRNA targets by analyzing the experi-
mental data generated by CLIP-seq and degradation 
groups, providing various visual interfaces for explor-
ing miRNA targets. The database contains abundant 
miRNA-ncRNA, miRNA-mRNA, miRNA-RNA, and 
RNA-RNA data. miRDB database [28] was used for 
miRNA target-gene prediction and functional anno-
tation. We used the Starbase and miRDB databases to 
predict miRNAs interacting with key genes (mRNAs) 
and then used the intersection part of the results from 
the two databases to draw the mRNA-miRNA interac-
tion network using Cytoscape software.

CHIPBase database [29] (version 2.0) (https:// rna. 
sysu. edu. cn/ chipb ase/) from the DNA binding protein. 
ChIP-seq data identified thousands of combining base 
sequence matrices and binding sites and predicted mil-
lions of transcriptional regulatory relationships between 
transcription factors (TFs) and genes. HTFtarget data-
base [30] (http:// bioin fo. life. hust. edu. cn/ hTFta rget) is 
a comprehensive database of human TFs and their tar-
gets. We searched for TFs that bind to key genes using 
CHIPBase and hTFtarget databases, extracted the inter-
section parts, and plotted the mRNA-TF interaction 
network using Cytoscape software.

We also predicted the direct and indirect drug targets 
of NRDEGs through CTD (Comparative Toxicogenom-
ics Database) [31] explored the interaction between 
NRDEGs and drugs, and used Cytoscape software to 
visualize the mRNA-drug interaction network.

Expression differences, chromosomal localization, 
and functional similarity analysis of NRDEGs
We analyzed NRDEG expression in endometriosis 
datasets GSE7305 and GSE11691. To analyze NRDEGs 
localization in 24 pairs of chromosomes, we first used 
UCSC database (http:// genome. ucsc. edu/) [32] to 
determine the start and stop sequences of NRDEGs. 
Subsequently, R package RCircos [33] was used to map 
the chromosome localization. GoSemSim [34] is an R 
software package used to calculate the semantic simi-
larity between gene products, gene clusters, and GO 
terms. To analyze the functional correlations among 
key genes, R package GOSemSim was used to calculate 
the functional correlations of key genes.

https://rna.sysu.edu.cn/chipbase/
https://rna.sysu.edu.cn/chipbase/
http://bioinfo.life.hust.edu.cn/hTFtarget
http://genome.ucsc.edu/
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Immunohistochemistry
All the endometriosis patient tissues were obtained 
from Taizhou Hospital of Zhejiang Province affiliated 
to Wenzhou Medical University. Informed consent was 
obtained from all participating patients and the study was 
approved by the ethics committee of biomedical research 
involving humans (Approval No. K20230901). In detail, 
tissues from patients with endometriosis were first fixed 
in 10% formalin and paraffin embedded. Tissue sections 
were dewaxed and rehydrated in xylene and graded alco-
hol solutions. High-temperature antigen extraction was 
then performed in citrate buffer (pH 6). Primary anti-
bodies were incubated overnight at 4  °C, and second-
ary antibodies were incubated at room temperature for 
30 min. After washing, sections were stained with a DAB 
peroxidase substrate kit until the desired intensity was 
achieved.

Analysis of immune infiltration
CIBERSORTx [35] is an immune infiltration analysis 
algorithm based on linear support vector regression 
that deconvolves the transcriptome expression matrix 
to estimate the composition and immune cell abundance 
in mixed cells. We uploaded the data gene expression 
matrix to CIBERSORTx online website (https:// ciber 
sortx. stanf ord. edu/), combined with Homo sapiens gene 
matrix (Homo sapiens) characteristics, and screened for 
immune cell enrichment scores greater than zero. Finally, 
specific immune cell infiltration abundance matrix 
results were obtained and demonstrated. The difference 
in the proportion of immune cells between endome-
triosis samples (group: endometriosis) and normal sam-
ples (group: normal) in the endometriosis dataset was 
calculated using the Wilcoxon test, and a P-value < 0.05 
was considered statistically different. The correlation of 
immune cells between different groups was calculated 
using Spearman and visualized by R package ggplot2. We 
then combined the gene expression matrix of the data-
set to calculate the correlation between immune cells and 
NRDEGs and drew a correlation heatmap using R pack-
age pheatmap.

Results
Technical roadmap
Figure 1.

Analysis of endometriosis‑related differentially expressed 
genes
Using the limma package, we first normalized the 
expression profile data of the endometriosis datasets, 
GSE7305 and GSE11691. The data distribution before 
and after standardized treatment is revealed in a box plot 
(Figs. 2A–D). We found that the data after standardized 

treatment tended to be consistent in their expression 
levels. To analyze the gene expression values in endome-
triosis dataset samples (group: endometriosis) relative 
to normal samples (group: endometriosis), we used R 
package limma to analyze the differences between data-
sets GSE7305 and GSE11691 and obtained the differen-
tially expressed genes from the two datasets. The results 
were as follows: Dataset GSE7305 got 20,247 DEGs, of 
which 3480 genes met the | logFC |> 0.5 and P.adj < 0.05. 
At this threshold, the number of highly expressed (low 
expression in the normal group, positive logFC, upregu-
lated genes) in the endometriosis group was 1760, and 
the number of low expressed (high expression in the 
normal group, negative logFC, downregulated genes) in 
the endometriosis group was 1720. A volcano map was 
constructed based on the analysis results of this dataset 
(Fig. 3A). The GSE11691 got 12,376 DEGs, 610 genes met 
the | logFC |> 0.5 and P.adj < 0.05, and under the thresh-
old, the number of highly expressed genes (low expres-
sion in the normal group, positive logFC, upregulated 
genes) in the endometriosis group was 396. The num-
ber of genes with low expression (high expression in the 
normal group, negative logFC, downregulated genes) in 
the endometriosis group was 214. We drew a volcano 
map based on the differential analysis results from the 
GSE11691 dataset (Fig. 3B).

To obtain the NRDEGs, we intersected the DEGs 
from GSE7305 and GSE11691 with |logFC|> 0.5 and P.
adj < 0.05, 330 common differentially expressed genes 
(co-DEGs) of the endometriosis dataset were obtained, 
and a Venn diagram was drawn (Fig. 3C). We also exam-
ined the intersection between the co-DEGs and necrop-
tosis-related genes using the endometriosis dataset. Ten 
NRDEGs from the endometriosis dataset were obtained, 
and a Venn diagram was drawn (Fig.  3D), which were 
C7, HOOK1, PKP3, AHR, TUFM, GJB1, GSN, MYO6, 
CLEC7A, and CD74. According to the results obtained 
from the Venn diagram, the expression differences of 10 
NRDEGs in the GSE7305 (Fig. 3E) and GSE11691 data-
sets (Fig.  3F) among different sample groups were ana-
lyzed, and the R package pheatmap was used to draw a 
heatmap to display the analysis results (Figs.  3E and F). 
The results demonstrated that PKP3, GJB1, HOOK1, 
TUFM, and MYO6 were upregulated (low expression 
in the normal group, positive logFC, yellow in the fig-
ure), whereas C7, AHR, GSN, CLEC7A, and CD74 were 
downregulated (high expression in the normal group, 
blue in the figure, logFC is negative).

Functional enrichment analysis
To evaluate the biological processes, molecular func-
tions, cell components, biological pathways, and endo-
metriosis of 10 NRDEGs (C7, HOOK1, PKP3, AHR, 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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TUFM, GJB1, GSN, MYO6, CLEC7A, and CD74), we 
first conducted GO (gene ontology) analysis for NRDEGs 
(Table  1). The screening criteria for enrichment items 
were P value < 0.05 and FDR value (Q value) < 0.05, which 
were considered statistically significant. The results dem-
onstrated that 10 NRDEGs (C7, HOOK1, PKP3, AHR, 
TUFM, GJB1, GSN, MYO6, CLEC7A, and CD74) were 
mainly enriched in biological processes, such as regula-
tion of lymphocyte activation in endometriosis, response 
to alcohol, regulation of multi-organism processes, and 
cellular components (CC), such as endocytic vesicles, 
clathrin-coated endocytic vesicles, and clathrin-coated 
vesicle membranes. It was also enriched in molecular 
function (MF), including MHC protein binding, actin 

binding, and actin filament binding. We demonstrated 
GO functional enrichment analysis results using a bub-
ble diagram (Fig. 4A). Furthermore, GO gene functional 
enrichment analysis results are presented in the network 
diagram (Fig.  4B). Subsequently, we conducted a GO 
enrichment analysis of the 10 NRDEGs combined with 
logFC. Moreover, based on the enrichment analysis, we 
calculated each molecule’s corresponding Z score by the 
molecule’s logFC value in the differential analysis result of 
the provided molecule in the endometriosis dataset. We 
present the GO enrichment analysis results of combined 
logFC using a chord diagram (Fig. 4C). The GO enrich-
ment analysis results are displayed in the form of a San-
key diagram (Fig. 4D), including BP, CC, MF (biological 

Fig. 1 Technology roadmap
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process, cellular component, and molecular function), 
and their corresponding function or pathway ID (ID) and 
category ID (ID) including the relationship between the 
gene names (gene).

Gene set enrichment analysis
To determine the impact of the expression levels of all 
genes related to endometriosis metabolism on the occur-
rence of endometriosis, we evaluated the gene expression 
profile and the biological processes involved in GSE7305 

dataset (Fig.  5A) and GSE11691 dataset (Fig.  5F) by 
GSEA (Gene Set Enrichment Analysis) enrichment anal-
ysis, respectively. Links between cellular components 
and their molecular functions. P < 0.05 and FDR value 
(Q value) < 0.25 were considered significant enrichment 
screening criteria. The results displayed that differentially 
expressed genes in dataset GSE7305 were significantly 
enriched in IL1 and megakaryocytes in obesity (Fig. 5B), 
photodynamic therapy-induced NFKB survival signal-
ing (Fig. 5C), the IL5 pathway (Fig. 5D), MAPK signaling 

Fig. 2 Presentation of results *of standardized processing of the endometriosis dataset. Endometriosis dataset GSE7105 is displayed in the data box 
before (A) and after (B) standardized treatment. Endometriosis dataset GSE1169 is displayed in the data box before (C) and after (D) standardized 
treatment
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Fig. 3 Endometriosis-related differentially expressed genes analysis. Volcano map of differentially expressed genes analysis between endometriosis 
(group: endometriosis) and normal endometrial tissue (group: normal) in GSE7305 dataset (A) and GSE11691 dataset (B). (C) Venn diagram 
of differentially expressed genes in the GSE7305 dataset and GSE11691 dataset. (D) Venn diagram of co-DEGs and necroptosis-related genes 
in the dataset. (E) Complex numerical heatmaps of NRDEGs in GSE7305 dataset. (F) GSE11691 dataset. Co-DEGs, common differentially expressed 
genes. NRDEGs, necroptosis-related differentially expressed genes
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pathway (Fig.  5E), and other pathways (Figs.  5A–E, 
Table 2). However, differentially expressed genes in data-
set GSE11691 were significantly enriched in photody-
namic therapy-induced NFKB survival signaling (Fig. 5G), 
Wnt signaling (Fig.  5H), IL8 CXCR2 pathway (Fig.  5I), 
and focal adhesion PI3K-AKT mTOR signaling pathway 
(Fig. 5J), and other pathways (Figs. 5F–J, Table 3).

Construction of PPI, mRNA‑miRNA, mRNA‑TF, 
and mRNA‑drug regulatory networks
First, protein–protein interaction analysis was conducted 
using STRING database with a minimum required inter-
action score greater than 0.150. Low confidence (0.150) 
was used as the standard to construct a PPI network of 
10 NRDEGs (C7, HOOK1, PKP3, AHR, TUFM, GJB1, 
GSN, MYO6, CLEC7A, and CD74). The interactions 
were visualized using Cytoscape software (Fig. 6A). There 
were only seven NRDEGs in the PPI network: C7, AHR, 
TUFM, GSN, MYO6, CLEC7A, and CD74. Second, miR-
NAs related to NRDEGs were obtained from StarBase 
and miRDB databases. To visualize the mRNA-miRNA 
regulatory network, Cytoscape was applied (Fig.  6B), 
which contained 10 mRNA key genes (C7, HOOK1, 
PKP3, AHR, TUFM, GJB1, GSN, MYO6, CLEC7A, and 
CD74) and 26 miRNA molecules. Specific names of the 
miRNA molecules are listed in Table S2. TFs combined 
with NRDEGs were obtained using the ChIPBase and 
hTFtarget databases. Using Cytoscape software, we struc-
tured and visualized a network of mRNA-TF interactions 
(Fig. 6C). It contains 10 key mRNA genes (C7, HOOK1, 
PKP3, AHR, TUFM, GJB1, GSN, MYO6, CLEC7A, and 
CD74) and 100 transcription factors. Specific TF mol-
ecule names are listed in Table S3. Finally, CTD data-
base was used to identify potential drugs or molecular 
compounds of the NRDEGs. The mRNA-drug network 
was constructed and visualized using Cytoscape soft-
ware (Fig.  6D), which contained 10 mRNA key genes 

(C7, HOOK1, PKP3, AHR, TUFM, GJB1, GSN, MYO6, 
LEC7A, and CD74) and 41 drugs or molecular com-
pounds. The names of specific drugs or molecular com-
pounds are listed in Table S4.

Expression differences, chromosomal localization, 
and functional similarity analysis of NRDEGs
To further verify the expression difference of NRDEGs 
in the endometriosis dataset, 10 NRDEGs (C7, 
HOOK1, PKP3, AHR, TUFM, GJB1, GSN, MYO6, 
CLEC7A, and CD74) were compared between the 
groups (Figs. 7A and B). CD74 expression analysis was 
performed for GSE7305 and GSE11691 in the endo-
metriosis and normal groups, respectively. The dif-
ference in the results of dataset GSE7305 (Fig.  7A) 
demonstrated that all NRDEGs were statistically sig-
nificant, and the expression levels of C7, HOOK1, 
PKP3, AHR, GJB1, and MYO6 in different groups of 
endometriosis dataset GSE7305 were statistically sig-
nificant (P < 0.001). There was a highly statistically 
significant difference in TUFM, GSN, and CLEC7A 
expression levels among the groups (P < 0.01). The 
expression of CD74 in the different groups was sta-
tistically significant (P value < 0.05). The difference 
results of dataset GSE11691 (Fig.  7B) illustrated 
that all NRDEGs were statistically significant: AHR, 
TUFM, and MYO6 expression levels in different 
groups of dataset GSE76885 were statistically signifi-
cant (P value < 0.001). HOOK1, GJB1, CLEC7A, and 
CD74 expressions in the different groups were statis-
tically significant (P < 0.01). The expression levels of 
C7, PKP3, and GSN in the different groups were sta-
tistically significant (P value < 0.05). We then mapped 
the chromosomal locations of the 10 NRDEGs (C7, 
HOOK1, PKP3, AHR, TUFM, GJB1, GSN, MYO6, 
CLEC7A, and CD74) (Fig.  7C). The results depicted 
that genes C7 and CD74 were placed on chromosome 

Table 1 GO enrichment analysis results of necroptosis-related differentially expressed genes

GO Gene ontology, BP Biological process, CC Cell component, MF Molecular function

Ontology ID Description GeneRatio BgRatio p‑value p.adjust qvalue

BP GO:0051249 regulation of lymphocyte activation 4/10 485/18670 8.34e-05 0.008 0.004

BP GO:0097305 response to alcohol 3/10 233/18670 2.16e-04 0.014 0.007

BP GO:0043900 regulation of multi-organism process 3/10 405/18670 0.001 0.032 0.016

CC GO:0030139 endocytic vesicle 3/10 303/19717 3.98e-04 0.019 0.010

CC GO:0045334 clathrin-coated endocytic vesicle 2/10 63/19717 4.45e-04 0.019 0.010

CC GO:0030665 clathrin-coated vesicle membrane 2/10 115/19717 0.001 0.042 0.021

MF GO:0042287 MHC protein binding 2/9 40/17697 1.78e-04 0.011 0.004

MF GO:0003779 actin binding 3/9 431/17697 0.001 0.032 0.013

MF GO:0051015 actin filament binding 2/9 198/17697 0.004 0.034 0.014
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5, HOOK1 gene was placed on chromosome 1, MYO6 
gene was placed on chromosome 6, AHR gene on chro-
mosome 7, GSN gene on chromosome 9, and PKP3 
gene on chromosome 11. CLEC7A was placed on chro-
mosome 12, and TUFM was placed on chromosome 

12. Based on these scores, scholars analyzed the genes 
involved in endometriosis lesions and displayed them 
as bar graphs (Fig. 7D) and rain-cloud graphs (Fig. 7E). 
The results depict that PKP3, GSN, MYO6, CLEC7A, 
and CD74 play important roles in this process.

Fig. 4 Functional Enrichment Analysis of NRDEGs (GO). (A) Bubble diagram of GO functional enrichment analysis results of NRDEGs. Network 
diagram of GO functional enrichment analysis results of NRDEGs. In the circular network diagram (B), yellow dots represent specific genes, and blue 
circles represent specific pathways. (C) Chord plots of GO functional enrichment combined with logFC analysis results of NRDEGs. (D) Sankey 
diagram showing the results of GO functional enrichment analysis of NRDEGs. GO, gene ontology; BP, biological process; CC, cell component; MF, 
Molecular Function. The screening criteria for GO enrichment items were P value < 0.05 and FDR value (Q value) < 0.05. NRDEGs, necroptosis-related 
differentially expressed genes
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Immune infiltration analysis
We sorted out the expression profile data of GSE7305 
and GSE11691 in the endometriosis dataset and 
uploaded it to the CIBERSORTx online website. The CIB-
ERSORTx algorithm was used to calculate 22 immune 
cells and endometriosis samples in the endometriosis 
dataset (group: endometriosis) and the expression pro-
file data of normal samples (group: normal). Based on 
the immune infiltration analysis results, we plotted the 
immune cell infiltration of each sample of the 22 types 
of immune cells in GSE7305 and GSE11691 datasets in 
bar graphs (Figs.  8A and C). We also presented group 
comparison maps to illustrate the correlation between 
immune cell infiltration abundance and different groups 
in GSE7305 and GSE11691 datasets (Figs.  8B and D). 
We demonstrated a correlation between the abundance 
of six immune cell infiltrates in GSE7305 and GSE11691 
datasets using correlation heatmaps (Figs. 9A and B). The 
results demonstrated that after excluding the immune 
cells that had insignificant difference after grouping, there 
were statistically significant differences in the infiltration 
abundance of four types of immune cells in the GSE7305 
dataset (Fig. 8B) and the correlation between samples in 
different groups (P < 0.05). These four immune cells are 
resting memory CD4 + T cells, follicular helper T-cells, 
activated NK cells, and M2 Macrophages. In dataset 
GSE11691 (Fig.  8D), there were five types of immune 
cells, and the correlation between infiltration abundance 
and samples in different groups was statistically differ-
ent (P < 0.05). These five immune cells are plasma cells, 
gamma-delta T cells, resting NK cells, activated NK cells, 
and M2 Macrophages. The numbers of activated NK cells 
and M2 Macrophages were statistically significant in both 
datasets. To analyze the correlation between the expres-
sion levels of 10 NRDEGs (C7, HOOK1, PKP3, AHR, 
TUFM, GJB1, GSN, MYO6, CLEC7A, and CD74) in 
endometriosis datasets GSE7305, GSE11691 with infiltra-
tion abundance of two immune cells (activated NK cells 
and M2 macrophages). We demonstrated the infiltration 
abundance of two immune cells (activated NK cells and 
M2 macrophages) and 10 NRDEGs (C7, HOOK1, PKP3, 
AHR, TUFM, GJB1, GSN, MYO6, CLEC7A, and CD74) 
by lollipop figure (Figs. 9C–F). As can be seen from the 

figure, the corresponding gene MYO6 had high corre-
lation and consistency in the two datasets (r = 0.708 in 
GSE7305, P < 0.001; GSE11691 r = 0.686, P < 0.001), while 
M2 Macrophages had higher correlation and consistency 
in the two datasets for the corresponding genes HOOK1 
(r = -0.760 in GSE7305, P < 0.001; r = -0.726 in GSE11691, 
P < 0.001), GJB1 (in GSE7305) r = -0.679, P < 0.001; 
r = -0.626, P < 0.01 in GSE11691), and MYO6 (r = -0.780, 
P < 0.001 in GSE7305; r = -0.633, P < 0.01 in GSE11691). 
The immunohistochemical result indicated that the 
protein levels of MYO6 and HOOK1 were increased in 
patients with endometriosis, further suggesting that 
MYO6 and HOOK1 can be used as potential biomarkers 
for endometriosis (Fig. 10).

Discussion
Most gynecologists detect ovarian endometriosis using 
laparoscopy, which is the most common form of endo-
metriosis. Recently, microarray and high-throughput 
sequencing technologies have enabled bioinformatic 
analysis of endometriosis. However, most studies are 
based on invasive methods and single arrays, resulting in 
poor acceptance and a lack of cohorts for multiple com-
bined studies. Its goal is to discover new diagnostic meth-
ods and safe treatments for endometriosis by exploring 
its biological mechanisms and identifying meaningful 
molecular markers. Therefore, we analyzed patients with 
and without endometriosis and performed an enrich-
ment analysis of necroptosis-related genes to determine 
their role in endometriosis.

Disease onset and progression are associated with 
necroptosis, according to increasing research. Necrop-
tosis, programmed necrotic cell death, is vital for the 
host’s defense against certain pathogen incursions. 
Inflammatory  diseases result  from the deregulation 
of necroptosis [5]. However, its role in the immune 
response to endometriosis remains unclear. In this 
study, there were 330 DEGs between 19 endometriosis 
samples and 19 normal samples in two expression pro-
file datasets (GSE7305 and GSE1169). We intersected 
the common differentially expressed genes (co-DEGs) 
and necroptosis-related genes in two endometrio-
sis datasets to obtain 10 NRDEGs from endometriosis 

(See figure on next page.)
Fig. 5 GSEA enrichment analysis of the endometriosis dataset. (A) Four main biological characteristics of GSEA enrichment analysis for GSE7305 
dataset. GSE7305 is significantly enriched in WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY (B), WP_PHOTODYNAMIC_THERAPYINDUCED_
NFKB_SURVIVAL_SIGNALING (C), BIOCARTA_IL5_PATHWAY (D), KEGG_MAPK_SIGNALING_PATHWAY [36–38] (E), and other pathways (F). Four 
main biological characteristics of GSEA analysis in GSE11691 dataset. GSE11691 dataset is significantly enriched in WP_PHOTODYNAMIC_
THERAPYINDUCED_ NFKB_SURVIVAL_SIGNALI NG (G), WP_WNT_SIGNALING (H), WP_FOCAL_ADHESIONPI3KAKTMTO RSIGNALING_PATHWAY PID_
IL8_CXCR2_PATHWAY (I), (J). The significant enrichment screening criteria for GSEA enrichment analysis were P < 0.05 and FDR value (Q value) < 0.25. 
GSEA, Gene Set Enrichment Analysis
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Fig. 5 (See legend on previous page.)
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datasets. The ten NRDEGs were C7, HOOK1, PKP3, 
AHR, TUFM, GJB1, GSN, MYO6, CLEC7A, and CD74. 
Among these, PKP3, which belongs to the plakophilin 
family, promotes tissue integrity. Plakophilins link des-
mosomal cadherins to intermediate filaments at desmo-
some junctions, and in common with other catenins, 
they perform additional functions, including in the 
nucleus [16]. Gene GJB1 encodes the transmembrane 
channel protein connexin 32 (Cx32), a member of the 
Cxs family [39]. Previous studies have disclosed that 

GJB1 exerts anti-apoptotic and pro-tumor effects by 
interacting with it [40, 41]. HOOK1, encodes a member 
of the hook family of coiled-coil proteins that bind to 
microtubules and organelles via their N-and C-terminal 
domains, respectively. In the present study, HOOK1 
expression was upregulated. Notably, the N-terminal 
segment of Hook1 has a cytoskeletal protein-binding 
site that is involved in cell migration and intracellular 
vesicle trafficking [42]. The mitochondrial translation 
elongation factor is encoded by the TUFM. Cho et  al. 

Table 2 GSEA analysis of dataset GSE7305

GSEA Gene Set Enrichment Analysis

Description setSize enrichmentScore NES p‑value p.adjust

REACTOME_COMPLEMENT_CASCADE 56 0.822144048 2.431471926 0.001862197 0.028091787

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 67 0.762017649 2.333823306 0.001841621 0.028091787

WP_HUMAN_COMPLEMENT_SYSTEM 92 0.709058749 2.296694499 0.001795332 0.028091787

WP_COMPLEMENT_AND_COAGULATION_CASCADES 57 0.776932609 2.293240512 0.001879699 0.028091787

WP_COMPLEMENT_ACTIVATION 20 0.883248685 2.184014586 0.001984127 0.028091787

REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT 23 0.845953791 2.156923481 0.001964637 0.028091787

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 50 0.739155934 2.155146117 0.001855288 0.028091787

BIOCARTA_COMP_PATHWAY 17 0.900396432 2.141644522 0.002 0.028091787

WP_TYROBP_CAUSAL_NETWORK 59 0.705926715 2.111012452 0.001821494 0.028091787

BIOCARTA_LAIR_PATHWAY 17 0.873581328 2.077863261 0.002 0.028091787

WP_CELLS_AND_MOLECULES_INVOLVED_IN_LOCAL_ACUTE_INFLAM-
MATORY_RESPONSE

17 0.873581328 2.077863261 0.002 0.028091787

WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY 24 0.736409022 1.875075348 0.001972387 0.028091787

WP_PHOTODYNAMIC_THERAPYINDUCED_NFKB_SURVIVAL_SIGNALING 35 0.644242533 1.754669341 0.005859375 0.048273954

BIOCARTA_IL5_PATHWAY 10 0.829191458 1.693843996 0.006012024 0.048273954

KEGG_MAPK_SIGNALING_PATHWAY 254 0.408313605 1.480258186 0.005016722 0.045404266

Table 3 GSEA analysis of dataset GSE11691

GSEA Gene Set Enrichment Analysis

Description setSize enrichmentScore NES p‑value p.adjust

WP_TYROBP_CAUSAL_NETWORK 50 0.701769525 2.23878553 0.001658375 0.11042735

REACTOME_SMOOTH_MUSCLE_CONTRACTION 35 0.722865333 2.195371633 0.001644737 0.11042735

NABA_CORE_MATRISOME 188 0.556594657 2.179478164 0.00136612 0.11042735

REACTOME_ELASTIC_FIBRE_FORMATION 38 0.688839129 2.119760258 0.001628664 0.11042735

REACTOME_MOLECULES_ASSOCIATED_WITH_ELASTIC_FIBRES 33 0.692726707 2.086001585 0.001644737 0.11042735

NABA_ECM_GLYCOPROTEINS 127 0.552642372 2.048692518 0.001490313 0.11042735

REACTOME_MUSCLE_CONTRACTION 175 0.52131301 2.020357098 0.001371742 0.11042735

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 49 0.631792413 2.009084444 0.001666667 0.11042735

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 52 0.618962401 1.988331531 0.001658375 0.11042735

REACTOME_ECM_PROTEOGLYCANS 70 0.581720599 1.98573096 0.001587302 0.11042735

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 255 0.492682565 1.981455275 0.001329787 0.11042735

PID_IL8_CXCR2_PATHWAY 32 0.631225305 1.875950683 0.003372681 0.118114144

WP_PHOTODYNAMIC_THERAPYINDUCED_NFKB_SURVIVAL_SIGNALING 34 0.549039654 1.662008258 0.016583748 0.217999152

WP_WNT_SIGNALING 95 0.41447078 1.483747047 0.017160686 0.221492947

WP_FOCAL_ADHESIONPI3KAKTMTORSIGNALING_PATHWAY 278 0.326507177 1.324520451 0.019556714 0.227236181
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suggested that TUFM might be important for CASP8 
inhibition via autophagy activation [43]. Actin-based 
myosins (MYO6) move cargo towards the minus ends of 
actin filaments using their actin-based motor proteins. 

As it is the only myosin with this directionality, it is vital 
in many biological processes [44]. MYO6 is involved in 
various physiological processes in  vivo, and its expres-
sion has been reported to be increased in humans and 

Fig. 6 PPI, TF-mRNA, mRNA-miRNA, and mRNA-drug regulatory networks. (A) NRDEGs PPI Network. (B) mRNA-miRNA regulatory network: blue 
oval is mRNA, and green diamond is miRNA. (C) mRNA-TF regulatory network: the blue rectangle is mRNA; the green oval is TF. (D) mRNA-drug 
regulatory network: the blue rectangle is mRNA; the pink diamond is a drug. TF, Transcription factor. PPI, protein–protein interaction; NRDEGs, 
necroptosis-related differentially expressed genes
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Fig. 7 Expression differential analysis, chromosomal localization analysis, and functional similarity analysis of NRDEGs are demonstrated. Group 
comparison of NRDEGs expression differential analysis results in datasets GSE7305 (A) and GSE11691 (B). (C) Display of chromosome localization 
results of NRDEGs. Functional similarity analysis results of NRDEGs are shown in the bar chart (D) and rain-cloud chart (E). * represents P value < 0.05, 
which is statistically significant; ** represents P value < 0.01, which is highly statistically significant; *** represents P value < 0.001, which is highly 
statistically significant. NRDEGs, necroptosis-related differentially expressed genes

Fig. 8 Endometriosis analysis of immune infiltration in GSE7305 and GSE11691 datasets (CIBERSORTx). Results of 22 types of immune cell infiltration 
in GSE7305 dataset are displayed in the bar chart (A) and the group comparison chart (B). Results of 22 immune cell infiltration in the GSE11691 
dataset are shown in the bar chart (C) and the group comparison chart (D). The symbol NS means P ≥ 0.05, which is not statistically significant. The 
symbol * is equivalent to P < 0.05, which is statistically significant; The symbol ** is equivalent to P < 0.01, which is highly statistically significant; The 
symbol *** is equivalent to P < 0.001, which is highly statistically significant

(See figure on next page.)



Page 15 of 20Wang et al. BMC Women’s Health          (2023) 23:535  

Fig. 8 (See legend on previous page.)
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mice in different diseases, including cancer and hear-
ing loss [45, 46]. The enrichment analysis included GO 
terms for functional enrichment and GSEA enrichment. 

In addition to being enriched in immune response and 
activation, these genes were significantly associated 
with immune-cell interactions.

Fig. 9 Heatmap of correlation presents immune infiltration results of GSE7305 and GSE11691 datasets and correlation analysis between two kinds 
of immune cells and NRDEGs. Heatmap showing the correlation of 22 immune cell infiltration results in GSE7305 dataset (A) and GSE11691 dataset 
(B). Correlation analysis between immune cells activated Nk. cells and NRDEGs in GSE7305 (C) and GSE11691 (D) datasets. M2 Macrophages show 
the correlation between NRDEGs and GSE7305 (E) and GSE11691 (F). The Y-axis of the lollipop figure represents the specific gene, and the X-axis 
represents the correlation size. The circle size in the lollipop graph represents the correlation degree; the higher the degree of correlation, the larger 
the circle, and the different colors of the circle represent the P value obtained by the statistical correlation method. The higher the bar (distance 
from 0), the higher the degree of correlation (positive numbers mean positive correlations, negative numbers mean negative correlations). The 
symbol * is equivalent to P < 0.05, statistically significant; the symbol ** is equivalent to P < 0.01, which is highly statistically significant. NRDEGs, 
necroptosis-related differentially expressed genes
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In recent decades, accumulating evidence has demon-
strated immune imbalance in endometriosis [47]. Com-
pared to normal endometrium, endometriosis patients 
have more immune cells, particularly NK and M2 cells. 
However, the immune cell activation pattern in endo-
metriosis remains unclear. The role of immune cell 
infiltration in endometriosis needs to be further investi-
gated, and we performed a comprehensive evaluation of 
immune cell infiltration in endometriosis using CIBER-
SORT. Our study demonstrated a correlation between the 
infiltration abundance of NK cells and M2 macrophage 
immune cells. Moreover, genes were statistically differ-
ent between the GSE7305 and GSE1169 datasets. Previ-
ous studies have reported downregulation of NK cells in 
endometriosis patients; our results are consistent with 
theirs [48, 49]. Lagana AS et al. [50] found that the num-
ber of M1 and M2 macrophages was significantly higher 
in the endometriosis group than in controls, regardless of 
stage. Moreover, M2 macrophages may inhibit the immu-
nological response of NK cells. Reduced NK cell number 
and function result in reduced cytotoxicity and elimina-
tion of ectopic endometrial cells [51, 52]. In our study, 
the relative genes of NK cell activation were MYO6 and 
macrophages. M2 represents HOOK1 expression in the 
two datasets. MYO6 and HOOK1 have a limited impact 
on the immune system in endometriosis. A macromo-
lecular antigen, ovalbumin, showed high permeability 
to Rmc monolayers lacking myo6. It still induced strong 
T-cell activation because it retained antigenicity. In a 
study by Yu-wei Liao et  al. [53], MyO6-deficient RMC 
monolayers demonstrated high permeability, retaining 
ovalbumin antigenicity, thereby activating T cells. Our 

findings suggest that MYO6 and HOOK1 are associ-
ated with immune infiltration in endometriosis and can 
be used as novel potential biomarkers and predictors of 
immune cell infiltration in endometriosis.

Necroptosis represents the newly discovered immu-
nogenic cell death (ICD) forms. Evidence shows that 
necroptosis modulates the immune system, primar-
ily composed of natural killer (NK) cells, macrophages, 
dendritic cells (DC), and T and B lymphocytes [54]. To 
investigate whether MYO6 and HOOK1 contribute to 
immune cell infiltration, we explored the correlation 
between these two factors. Necroptosis and the immune 
response appear to be interconnected in endometriosis, 
as indicated by their significant association with immune 
cells. The molecular mechanisms underlying the com-
plex interactions between these genes and immune cells 
should be elucidated in future studies. Molecular classi-
fication can improve risk stratification and management 
of EC [55, 56]. Hence, the identification and verification 
of molecular classification in endometriosis, as well as 
the examination of diverse molecular markers, have the 
potential to significantly impact the treatment approach, 
particularly for patients with fertility requirements, by 
modifying the surgical methodology and altering the 
follow-up strategy. It has been depicted to correlate radi-
ological features with molecular/genomic profiles to clas-
sify endometrial cancer prognosis [57]. Ultrasound serves 
as a prevalent diagnostic tool for endometriosis, followed 
by the integration of radiomics with molecular/genomic 
profiling, enabling the tailoring of surgical and post-sur-
gical treatment approaches for patients with endometri-
osis. In the era of personalized medicine, it is necessary 

Fig. 10 The immunohistochemical result of endometriosis tissue (× 100)
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to determine the best treatment for each patient with 
endometrial cancer based on the patient’s molecules/
genes [58]. In the foreseeable future, the implementation 
of molecular/genomic analysis will facilitate the tailoring 
of the optimal therapeutic approach for endometriosis. 
With the current understanding of the molecular mech-
anisms of endometrial disease, discussing the results of 
this study may contribute to future directions in endome-
triosis treatment and management.

This study identified 26 miRNAs associated with 
NRDEGs using the StarBase and miRDB databases. In 
endometriosis, miRNAs are associated with genetic, epi-
genetic, and angiogenic factors, hormones, cytokines, 
chemokines, oxidative stress (OS) markers, inflammation 
mediators, hypoxia, angiogenesis, and an altered immune 
system, which  contribute  to  its  pathogenesis [59]. A 
total of 100 transcription factors (TFS) combined with 
NRDEGs were obtained from the ChIPBase and hTFTar-
get databases. Previous studies have demonstrated that 
miR-106a-5p inhibits the proliferation, migration, and 
invasion of ectopic endometrial stromal cells by target-
ing the forkhead box transcription factor FOXC1 via the 
PI3K/Akt/mTOR signaling pathway [60]. Due to the lack 
of effective therapeutic drugs for EMS [61] based on the 
CTD database, 41 molecular compounds and drugs that 
are potentially effective against EM were identified by 
NRDEGs.

Our study has some limitations. First, we conducted 
a comprehensive bioinformatic analysis to identify the 
association between NRDEGs and endometriosis. Fur-
ther in  vitro and in  vivo studies are needed to validate 
the role of necroptotic-related genes in endometriosis 
and gain a deeper understanding of its pathogenesis. Sec-
ond, this was a retrospective study; therefore, important 
clinical information could not be obtained. Third, the 
specimens in this study were from endometriotic tissue; 
therefore, the biomarkers could not be used to diagnose 
the early stages of the disease, and more research on 
blood biomarkers is required.

Conclusions
Ten NRDEGs (C7, HOOK1, PKP3, AHR, TUFM, GJB1, 
GSN, MYO6, CLEC7A, and CD74) may serve as diagnos-
tic biomarkers for endometriosis have been found for the 
first time. MYO6 and HOOK1 can be used as potential 
biomarkers for endometriosis. A strong association was 
also found between the two selected genes and immune 
cell infiltration to explore the pathogenesis of endo-
metriosis, which could provide a rationale for future 
treatments. These findings increase our knowledge of 
necroptosis genes in EMS patients. However, the role of 
these necroptosis genes in EMS requires validation in the 
future.
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