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Abstract
Objective This study aimed to reveal the urine metabolic change of endometrial cancer (EC) patients during fertility-
sparing treatment and establish non-invasive predictive models to identify patients with complete remission (CR).

Method This study enrolled 20 EC patients prior to treatment (PT) and 22 patients with CR, aged 25–40 years. 
Eligibility criteria consisted of stage IA high-grade EC, lesions confined to endometrium, normal hepatic and renal 
function, normal urine test, no contraindication for fertility-sparing treatment and no prior therapy. Urine samples 
were analyzed using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), a technique chosen for 
its high sensitivity and resolution, allows for rapid, accurate identification and quantification of metabolites, providing 
a comprehensive metabolic profile and facilitating the discovery of potential biomarkers. Analytical techniques were 
employed to determine distinct metabolites and altered metabolic pathways. The statistical analyses were performed 
using univariate and multivariate analyses, logistic regression and receiver operating characteristic (ROC) curves to 
discover and validate the potential biomarker models.

Results A total of 108 different urine metabolomes were identified between CR and PT groups. These metabolites 
were enriched in ascorbate and aldarate metabolism, one carbon pool by folate, and some amino acid metabolisms 
pathways. A panel consisting of Baicalin, 5beta-1,3,7 (11)-Eudesmatrien-8-one, Indolylacryloylglycine, Edulitine, and 
Physapubenolide were selected as biomarkers, which demonstrated the best predictive ability with the AUC values 
of 0.982/0.851 in training/10-fold-cross-validation group, achieving a sensitivity of 0.975 and specificity of 0.967, 
respectively.

Conclusion The urine metabolic analysis revealed the metabolic changes in EC patients during the fertility-
sparing treatment. The predictive biomarkers present great potential diagnostic value in fertility-sparing treatments 
for EC patients, offering a less invasive means of monitoring treatment efficacy. Further research should explore 
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Introduction
Endometrial cancer (EC) is one of the most common 
gynecological cancers, with gradually rising incidence in 
recent years, especially among younger populations [1, 2]. 
About 15% of ECs occur in premenopausal women, and 
5% are diagnosed in those of child-bearing age [3]. Con-
sequently, fertility-preserving therapy has been applied in 
young EC patients with fertility aspirations [4]. Although 
fertility-sparing therapy offers a glimmer of hope for 
young women and has achieved a high response rate, lit-
erature reports indicate that the reproductive outcome 
remains poor, with only about 30% of patients becoming 
pregnant [5, 6]. Repeated hysteroscopic evaluation and 
diagnostic curettage during the treatment procedure may 
damage or cause adhesion to the endometrium, decreas-
ing endometrial receptivity and lowering fertilized eggs 
implantation rates, which may cause the low rate of 
pregnancy [7]. Also, some drug of fertility-sparing treat-
ment, such as Gonadotrophin releasinghormone agonist 
(GnRHa), can cause severe endometrial atrophy, compli-
cating sampling and pathological diagnosis [8]. Besides, 
long-time use of drugs may cause side effect including 
obesity, abnormal liver function, thrombogenesis, osteo-
porosis, cardiovascular, and cerebrovascular diseases, it 
is crucial to identify biomarkers that can aid in evaluating 
treatment effectiveness and determining whether to con-
tinue the treatment [9]. Given the condition of low rate of 
pregnancy, limited understanding of treatment efficacy, 
the harm for invasive evaluations, and the absence of 
effective biomarkers for monitoring treatment response, 
a minimally invasive or noninvasive method with high 
specificity and sensitivity to evaluate the remission rate 
of fertility-sparing treatment, reduce the number of hys-
teroscopic operations, and improve the probability of 
pregnancy is required [10].

Metabolomics, as a minimally invasive or noninvasive 
emerging discipline, is focusing on small compounds 
with several major advantages, including relative ease 
of analysis, sensitivity to environment factors affecting 
pathogenesis and progression of disease, and minimal 
harm to the body [11–13]. It has been widely applied into 
various fields, including disease discovery, pharmacology, 
nutrition, toxicology and sport medicine [14, 15]. Previ-
ous research has identified differences in amino acids, 
lipids, and other metabolites between healthy women 
and EC patients [16–18]. Shao et al. found five urine 
diagnostic biomarkers, including porphobilinogen, acet-
ylcysteine, N-acetylserine, urocanic acid and isobutyryl-
glycine which had great accuracy rate in discriminating 

25 EC patients from 25 healthy controls [19]. Knific et al. 
built a diagnostic model between 65 EC patients and 61 
controls using the ratio between acylcarnitine C16 and 
phosphatidylcholine PCae C40:1, the ratio between pro-
line and tyrosine, and the ratio between the two phos-
phatidylcholines PCaa C42:0 and PCae C44:5, which 
provided sensitivity of 85.25%, specificity of 69.23%, and 
area under the curve (AUC) of 0.837 [18]. Cheng et al. 
identified biomarker of phosphocholine, asparagine, and 
malate with the AUC between 0.88 and 0.92 between 21 
EC patients and 23 controls [20]. These metabolites have 
been proposed as biomarkers for diagnosing EC [21]. 
Although metabolomics has started to shed light on dis-
ease mechanisms in EC, no previous studies tackled the 
evaluation of fertility sparing treatment in EC patients 
using metabolomics.

Ultra-Performance Liquid Chromatography-Mass 
Spectrometry (UPLC-MS) is a highly sensitive and spe-
cific analytical method that combines the separation 
capabilities of UPLC with the qualitative and quantitative 
analysis capabilities of MS [22]. It is particularly useful for 
metabolic profiling and biomarker discovery, allowing for 
the identification and quantification of metabolites pres-
ent in urine samples [23, 24]. This technique enables us to 
explore the metabolic changes in EC patients undergoing 
fertility-sparing treatment, and identify potential specific 
biomarkers for evaluating conservative treatment effec-
tiveness, thereby providing new insights into treatment 
effectiveness.

Since many metabolites are excreted through the kid-
ney, metabolites are often more concentrated in urine 
than in blood, providing a robust and sensitive medium 
for detection [25]. In addition, early small changes in 
blood are eliminated due to homeostatic mechanisms, 
while urine collects waste from the entire body and 
exhibits more abundant changes [26]. Moreover, urine 
samples are easier to collect, store, and analyze compared 
to blood samples. Therefore, urine can better reflect the 
body’s metabolic state at early-stage of the disease and 
is expected to become an essential method for screening 
biomarkers [27]. In light of these advantages, our study 
employed UPLC-MS metabolomics to analyze urine 
samples as a sensitive and relevant tool for evaluating the 
effectiveness of fertility-sparing treatments in patients 
with EC.

In summary, our objective is to utilize urine metabolo-
mics to reveal metabolic changes in EC patients under-
going fertility-preserving treatment, thereby providing a 
novel, non-invasive method for treatment evaluation and 

the mechanistic underpinnings of these metabolic changes and validate the biomarker panel in larger, diverse 
populations due to the small sample size and single-institution nature of our study.
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enhancing our understanding of underlying metabolic 
mechanisms.

Materials and methods
In this observational study, patients were recruited from 
April 2020 to June 2021 at the Department of Obstetrics 
and Gynecology, Peking Union Medical College Hospi-
tal (PUMCH). Patients’ information such as age, height, 
weight, laboratory indices (including blood and urine 
routine examination, measures of liver and kidney func-
tion, level of tumor marker, and other relevant biochemi-
cal measures), treatment response, and other information 
were obtained from the medical and laboratory reports.

Eligibility criteria
Inclusion criteria
(1) Histologically confirmed EC, G1; (2) Women aged 
18–40 years who have strong desire to preserve their 
uterus; (3) The lesion was confined to the endometrium 
confirmed by imaging study; (4) Normal hepatic func-
tions (ALT, AST, etc.), renal functions (Cr, BUN, etc.) 
and urine test (UWBC, URBC, urine protein, etc.); (5) 
No contraindication for fertility-sparing treatment; (6) 
No prior therapy received by patients; (7) All participants 
provided written informed consent.

Exclusion criteria
(1) Patients with diseases potentially affect metabolism, 
such as thyroid dysfunction (hyperthyroidism or hypo-
thyroidism), and immunodeficiency diseases; (2) Patients 
with other forms of cancer; (3) Patients received any form 
of cancer therapy, such as radiation and chemotherapy.

Patients classification
All patients received the same fertility-sparing treat-
ment regimen: 500 mg daily of oral medroxyprogesterone 
acetate (MPA). The typical duration of treatment var-
ied based on individual response, but generally spanned 
between 3 and 6 months. During treatment, patients 
underwent endometrial curettage under hysteroscopic 
evaluation every three months to monitor the response. 
Patients were divided into pre-treatment (PT) group 
and the complete remission (CR) group according to the 
pathological results.

PT Group: Patients who had been diagnosed with EC 
but had not yet initiated any form of fertility-sparing 
treatment at the time of urine sample collection.

CR Group: Patients who, following fertility-sparing 
treatment, exhibited no evidence of EC verified through 
pathology [28].

A total of 42 women were included in this study, 
including 22 PT patients and 20 CR patients.

Urine sample collection and preparation
Midstream urine samples were collected from all partici-
pating patients in sterile, single-use containers. The sam-
ples were obtained before hysteroscopic evaluation after 
sterilizing vulva and vagina to minimize contamination. 
Upon collection, the samples were immediately stored 
on ice and transferred to the laboratory within 1 h. The 
urine samples were stored at − 80  °C before analysis. In 
the lab, 200 µl urine sample was mixed with 200 µl ace-
tonitrile and swirled for 30  s. Subsequently, the sample 
was subjected to centrifugation at 14,000×g for 10  min 
to precipitate solid impurities. The resulting supernatant 
was carefully decanted, vacuum-dried to a fine powder 
form, and stored at a temperature of -40  °C until fur-
ther analysis to preserve the integrity of the metabolites. 
Before undergoing UPLC-MS analysis, the dry powder 
was redissolved in 100 µl of 2% acetonitrile. To eliminate 
small-protein interference, a 10  kDa molecular weight 
cutoff ultracentrifugation filters was used prior to trans-
ferring the samples to an autosampler for analysis.

UPLC-MS analysis
Waters ACQUITY H-class LC system coupled with a 
Triple TOF 5600 mass spectrometer were applied to 
UPLC-MS analyses of urine samples. Metabolites were 
separated with a 15-minute gradient on a Waters HSS 
C18 column (3.0 × 100 mm, 1.7 μm) at a flow rate of 0.5 
mL/min. Mobile phase A consisted of 0.2‰ formic acid 
in H2O, and mobile phase B was 0.2‰ formic acid aceto-
nitrile solution. The gradient was set as follows: 0–1 min, 
2% solvent B; 1–3  min, 2–15% solvent B; 3–6  min, 
15–50% solvent B; 10–10.1  min, 95% solvent B; 10.1–
12 min, 95–2% solvent B; 12–15 min, 2% solvent B. The 
column temperature was set at 40◦C. The eluted metabo-
lites were analyzed by Triple TOF 5600 mass spectrome-
ters, with data collection in DDA mode. Parameters were 
as follows: First-level full scan range: 50-1200 m/z, cumu-
lative time: 0.25s, second-level cumulative time:0.1s, GS1: 
55, GS2: 55, Curtain Gas: 35, temperature: 550℃, Ion-
spray Voltage Floating: 4500 V.

Quality control
The quality control (QC) samples, prepared by mixing 
equal aliquots from each individual biological sample, 
serve as internal standards to monitor the performance 
and stability of the instrument over time. The QC sam-
ples were injected between every ten samples to assess 
the stability and repeatability of the analytical process. 
In total, five QC injections were carried out throughout 
the entire analysis, serving as checkpoints for data quality 
and instrument performance.
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Data processing
Data acquisition from UPLC-MS was subjected to rigor-
ous pre-processing and statistical analyses to ensure the 
validity and robustness of our results. Raw data files were 
initially processed using Progenesis QI software follow-
ing previously established strategies [29, 30]. Data were 
imported into MetaboAnalyst 5.0 (http://www.metabo-
analyst.ca) for further processing. Data normalization, 
log transformation and quality control sample correction 
were applied during the process.

Filling missing values
Variables missing more than 50% of the samples were dis-
carded to minimize the influence of outliers. Addition-
ally, variables with a coefficient of variation (CV) greater 
than 0.5 were also excluded to ensure that only reliably 
quantifiable metabolites were considered. In our dataset, 
less than 5% missing data, 2015 missing values among 
40,764 values, were observed. We utilized the K-nearest 
Neighbor algorithm to impute missing values within each 
group to maintain the integrity of the dataset (set k to 5). 
Additionally, we used the minimum value method for fill-
ing in missing values between the CR and PT groups to 
provide a conservative estimate and avoid inflating the 
significance of our findings.

Pattern recognition and significant metabolites identification
Data were analyzed using pattern-recognition meth-
ods, including principal component analysis (PCA) and 
orthogonal partial least squares discriminant analysis 
(OPLS-DA), with the software Simca version 14.1 [31, 
32]. Metabolites with a p-value < 0.05, Variable Impor-
tance in the Projection (VIP) >1, and Fold-change > 1.5 
were considered significant differential metabolites. 
These cutoffs were chosen based on their common usage 
in metabolomics studies and their suitability for mini-
mizing false positives while maximizing true discoveries.

Validation and prediction accuracy
The MetaboAnalyst 5.0 platform was used to conduct a 
receiver operating characteristic (ROC) analysis, a graph-
ical method used for evaluating the ability of a binary, 
and 10-fold cross-validation, a technique used to assess 
how well a predictive model will generalize to an inde-
pendent dataset, to assess the predictive accuracy of the 
model, providing an accurate measure of the model’s dis-
criminatory capability [33–36].

Results
A total of 42 women were included in this study, includ-
ing 22 PT patients and 20 CR patients. The demographic 
and clinical characteristics of the study are summarized 
in Table  1 (Additional details in Supplementary Table 
S1). Groups were matched by age, height, weight, and 
body mass index (BMI), and the pathological diagno-
sis of each patient was confirmed by two professional 
pathologists after hysteroscopic evaluation. The liver and 
renal function, along with other laboratory indices, were 
within the normal range and also matched in each group. 
No statistically significant differences were found in each 
subgroup, except for the level of CA125. Patients with CR 
have a lower level of CA125 compared to patients with 
PT (p = 0.0016, Mann-Whitney U test).

A differential analysis on urine metabolomics was per-
formed to discriminate CR patients from PT patients. 
Biomarker panels were discovered based on metabolic 
profiling analysis. The workflow of the study, outlining 
the steps of sample collection, metabolic profiling, and 
data analysis, is presented in Fig. 1. The QC sample clus-
tering, shown in Figure S1, demonstrates the reliability of 
the metabolomics analyses (p < 0.05, t-test for variance). 
After removal of the missing values more than 50% of 
samples, values with CV > 0.5, score < 40, and fragmen-
tation < 20, a total of 947 urine features were selected for 
further analysis.

The differences between these two groups could be 
observed from the PCA score plot (Fig.  2A), and the 
OPLS-DA model achieved a better separation (Fig.  2B). 
One hundred permutation tests demonstrated the stabil-
ity and robustness of the supervised models (Fig. 2C).

Table 1 The baseline information of enrolled subjects in the 
study
Characteristics PT (n = 22) CR(n = 20)
Age (years), median (range) 35 (32–37) 32 (30–34)

BMI (kg/m2), median (range) 28.2 
(24.4–30.9)

26.8 
(25.4–31.8)

Laboratory examination, median (range)

ALT (U/L) 19 (11–38) 17 (8–33)

Cr (µmol/L) 57 (44–74) 62 (33–76)

Glucose (mmol/L) 5.3 (4.6–12.1) 5.1 (4.0–7.0)

TC (mmol/L) 5.2 (3.3–6.6) 5.1 
(3.72–6.2)

TG (mmol/L) 1.1 (0.3–2.8) 1.1 (0.4–3.2)

HDL (mmol/L) 1.3 (0.7–3.7) 1.1 (0.8–2.2)

LDL (mmol/L) 3.0 (1.6–4.8) 3.0 (1.6–4.6)

Urine WBC 0-Trace 0-Trace

Urine RBC 0-Trace 0-Trace

Urine protein (g/L) 0 0

Urine glucose (mmol/L) 0 0

CA125 (U/mL) 20.1 
(10.5–32.8)

13.7 
(5.5–31.3)

Comorbidity (n, %)

DM 3 (13.6%) 3 (15.0%)

HP 2 (9.1%) 2 (10%)

PCOS 2 (9.1%) 2 (10%)
Notes: BMI = body mass index, DM = diabetes mellitus, HP = hypertension, 
PCOS = polycystic ovary syndrome.

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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In total, 108 differential metabolites were identified 
(Fig. 2D and E), which were further submitted for path-
way analysis and prediction model construction. Pathway 
enrichment analysis showed enrichment in ascorbate and 
aldarate metabolism, one carbon pool by folate, phenylal-
anine metabolism, arginine biosynthesis, histine metabo-
lism, etc. (Fig. 3) [37–39].

The diagnostic accuracy of identified differential 
metabolites was evaluated (Table S2). A total of 32 
metabolites demonstrated potential diagnostic ability 
with an AUC above 0.8, and 2 metabolites exhibited an 

AUC above 0.9. A multivariate ROC curve-based explor-
atory analysis was performed to achieve a better pre-
dictive model using a logistic regression algorithm. The 
panel consisting of Baicalin, 5beta-1,3,7 (11)-Eudesma-
trien-8-one, Indolylacryloylglycine, Edulitine, and Physa-
pubenolide exhibited the best predictive ability (Table 2). 
The AUC value of the panel was 0.982 (0.931 ~ 1.000) 
for the discovery group with a sensitivity of 0.975 and a 
specificity of 0.967, which indicated that the biomarker 
panel is highly effective in differentiating between the 
CR and PT groups in the discovery cohort. For 10-fold 

Fig. 2 Metabolic analysis between pre-treatment and complete remission patients. A. PCA score plot of urine metabolome; B OPLS-DA score plot of 
urine metabolome; C. 100 permutation test of the OPLS-DA model in samples; D. Volcano plot of differential metabolites between the two groups; E. 
Heatmap of differential metabolites between the two groups

 

Fig. 1 The workflow of this study
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cross-validation, the AUC value was 0.851 (0.722 ~ 0.980) 
(Fig. 4), although lower than the AUC for the discovery 
group, still indicates strong predictive power.

Discussion
For patients receiving fertility preserving therapy, the 
tumor burden decreases as the disease gradual remits, 
and the metabolic pathways change accordingly. Thus, 
predicting the degree of disease remission can be 
achieved by comparing the changes of metabolites in CR 
and PT patients using metabolomics. In this study, we 

conducted a UPLC-MS-based metabolomics analysis to 
reveal the metabolic changes in EC patients during fertil-
ity-sparing treatment and establish diagnostic models to 
evaluate the treatment effect, which offer a broader scope 
to better capture the circulating metabolic features of EC 
patients receiving fertility-sparing treatment.

In the comparison between patients with CR and PT, 
the differential metabolites were mainly enriched in the 
ascorbate and aldarate metabolism. This specific meta-
bolic pathway plays an important role in managing oxi-
dative stress, which is closely associated with various 
pathologies and disorders, such as cardiovascular dis-
ease, aging, neurodegenerative diseases, and cancers 
[40–42]. Also, high-doses of ascorbate can induce pro-
oxidative effects and selectively kill cancer cells, although 
the mechanism of action is not fully understood [43, 44]. 
This indicates that a shift in this metabolic pathway could 
be instrumental in the treatment of EC. However, to our 
knowledge, changes of ascorbate and aldarate metabo-
lism has not previously been linked with fertility-sparing 
treatment of EC. Our observations corroborate existing 

Table 2 Prediction ability of metabolite panel for complete 
remission
Parameter AUC Sensitivity Specificity
aUrine 
metabo-
lites panel

Training/
Discovery

0.982 
(0.931 ~ 1.000)

0.975 
(0.953 ~ 0.997)

0.967 
(0.940 ~ 0.993)

10-fold 
Cross-
Validation

0.851 
(0.722 ~ 0.980)

0.864 
(0.864 ~ 1.000)

0.900 
(0.769 ~ 1.000)

aThe urine biomarker panel consisting of Baicalin, 5beta-1,3,7 (11)-Eudesmatrien-
8-one, Indolylacryloylglycine, Edulitine, and Physapubenolide

Fig. 3 Pathway enrichment analysis related to differential urine metabolites between pre-treatment and complete remission patients
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research on the anomalies in ascorbate and aldarate 
metabolism in various cancers [45–47]. The changes of 
this pathway in our study may be due to the inhibition 
of energy metabolism of EC cancer cells during the dis-
ease remission. Therefore, this metabolic pathway and 
related genes could serve as potential therapeutic targets 
for the fertility-sparing treatment of EC. In comparison 
to existing literature on the subject, our findings add new 
dimensions to the understanding of metabolic changes in 
patients undergoing fertility-sparing treatment for EC. 
While previous studies have examined changes in spe-
cific metabolic pathways in relation to various cancers, 
our study is the first to link alterations in ascorbate and 
aldarate metabolism with fertility-sparing treatments in 
EC.

Another crucial metabolic pathway displaying differ-
ences between the two groups was folic acid metabolism. 
Folic acid, a primary supplier of single-carbon chains, 
serves as a cofactor for the initial synthesis of purines 
and thymidines, which plays a key role in maintaining the 
genetic and epigenetic stability of DNA, and is directly 
involved in the organism’s growth, development or repro-
duction processes [48]. Folic acid deficiency impairs the 
conversion of nucleic acid to deoxythymine monophos-
phate, essential for DNA synthesis and repair. Misbinding 
of uracil to thymine leads to DNA instability, DNA strand 
breaks, DNA repair errors, and altered methylation sta-
tus on a genomic scale [49]. Consequently, folic acid 
deficiency is linked to various cancers, including head 
and neck cancers, nasopharyngeal cancers, esophageal 
cancers, pancreatic cancers, bladder cancers and cervi-
cal cancers [50–52]. In this study, folic acid levels were 
significantly elevated in patients with CR, consistent with 
previous research. Based on the observed increase in 
folic acid levels in patients with CR, we hypothesized that 
higher folic acid intake could potentially have a therapeu-
tic effect in reversing EC. But this interpretation requires 
further study for validation. However, excessive folic acid 
could promote the growth and progression of existing 

tumors, negatively correlating with EC development [53]. 
Besides, another report indicated that dietary levels of 
folic acid do not seem to affect the incidence of EC [54]. 
Therefore, further well-designed prospective studies or 
randomized clinical trials are necessary to investigate the 
folic acid’s effect on EC. Our findings are partially con-
sistent with earlier studies and provide new insights into 
its potential significance in fertility-sparing treatments, 
which warrants further investigation.

Metabolic pathways are not isolated entities but are 
part of a complex network that regulates cellular homeo-
stasis. Ascorbate metabolism plays an essential role in 
scavenging reactive oxygen species (ROS) and maintain-
ing the redox status within cells [41]. Elevated ROS lev-
els can lead to oxidative stress, which has been linked to 
DNA damage, aberrant cell proliferation, and tumorigen-
esis [55]. Folic acid metabolism is vital for the synthesis 
of purines and pyrimidines, the building blocks of DNA. 
Disruption in folic acid metabolism can affect DNA rep-
lication and repair, making cells susceptible to genetic 
mutations and tumorigenic transformations [56, 57]. In 
the context of EC, the interplay between ascorbate and 
folic acid metabolism could be of particular significance. 
The balance between these pathways might be essen-
tial for the efficacy of fertility-sparing treatments. For 
instance, optimizing ascorbate levels could mitigate oxi-
dative stress-induced damage, while ensuring proper folic 
acid metabolism might support DNA integrity during cell 
division. The disruptions in one pathway could affect the 
other, resulting in a cascade of metabolic imbalances that 
could either promote or inhibit tumor progression. While 
our study provides a foundational understanding of these 
metabolic alterations in EC, it also raises some ques-
tions about the deeper mechanistic interplay between 
these and other metabolic pathways, such as how other 
cofactors involved in DNA synthesis and repair interact 
with ascorbate and folic acid metanolism, and are there 
feedback loops or regulatory checkpoints that modulate 
these pathways. Further studies are warranted to unravel 

Fig. 4 ROC curves for the proposed diagnostic model. ROC curve based on urine biomarker panel in discovery group; B. ROC curve of 10-fold cross-
validation of the biomarker panel; C. Predicted probability plot of metabolite panel
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the complexities of these interactions, providing more 
comprehensive insights into the metabolic landscape of 
EC. Such findings could pave the way for novel therapeu-
tic strategies, targeting the metabolic vulnerabilities of 
endometrial cancer cells to enhance the efficacy of fertil-
ity-sparing treatments.

In the diagnostic model, Baicalein, found in the roots 
of Scutellaria baicalensis and Scutellaria lateriflora, has 
been reported to exhibit anticancer activity against vari-
ous cancers, including pancreatic, prostate, lung, breast, 
liver, gastric and colon cancers [58–63]. It targets multi-
ple sites and employs diverse pathways to induce apopto-
sis or programmed cell death [64]. In our study, Baicalein 
levels were found to be increased in CR patients, suggest-
ing its potential as a tumor marker. Furthermore, numer-
ous studies have demonstrated that baicalein enhances 
the efficacy of certain drugs potentially used in chemo-
prevention and anti-cancer therapy, indicating that it 
could also serve as potential drug for fertility-sparing 
treatment in patients [65–67]. However, it is crucial to 
acknowledge that while our findings suggest potential 
therapeutic implications of Baicalein, its clinical utility 
and safety in the specific context of EC and fertility-spar-
ing treatment remain uncertain. More extensive studies 
and clinical trials are needed to further explore its effi-
cacy and safety profile in this specific patient population.

Limitations
While our study sheds new light on the metabolic 
changes associated with fertility-sparing treatment in EC, 
several limitations should be noted. Firstly, the sample 
size of our study was relatively small, which may limit 
the generalizability of our findings. Secondly, the study 
was conducted at a single institution, which may intro-
duce bias and reduce the diversity of patient populations 
examined. Thirdly, although the groups were matched 
by age, height, weight, and BMI, other uncontrolled 
variables like dietary habits, and physical activity could 
also impact metabolic pathways and thus represent con-
founding factors. Finally, ethical responsibilities, and data 
confidentiality also demand conscientious consideration, 
ensuring the validated, ethical application of the findings 
in treatment decisions.

Conclusion
This study performed urine metabolomics approach to 
investigate the metabolic features of EC patients with 
fertility-sparing treatment, which was approved by the 
Ethics Committee of PUMCH (ZS-2666). The results 
reveal markedly different metabolic profiles between 
patients with CR and PT groups, suggesting the feasi-
bility of using metabolites for effect evaluation and pro-
vide new insights into the pathogenesis of diseases and 
potential targets for fertility-sparing treatment. Potential 

biomarkers were also explored and proved to have sig-
nificant diagnostic value, which could help determine 
the appropriate time to terminate treatment, reduce 
the number of operations, and minimize endometrial 
damage. However, our study’s limitations call for larger, 
multi-center studies to validate our preliminary results, 
and future investigations should ensure rigorous ethical 
oversight throughout their studies.
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