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Abstract
Background Surgery combined with radiotherapy substantially escalates the likelihood of encountering 
complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of 
Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of 
adjuvant radiotherapy in ESCSCC and minimize the occurrence of adverse events associated with the treatment.

Methods A dataset comprising MR images was obtained from 289 patients who underwent radical hysterectomy 
and pelvic lymph node dissection between January 2019 and April 2022. The dataset was randomly divided into two 
cohorts in a 4:1 ratio.The postoperative radiotherapy options were evaluated according to the Peter/Sedlis standard. 
We extracted clinical features, as well as intratumoral and peritumoral radiomic features, using the least absolute 
shrinkage and selection operator (LASSO) regression. We constructed the Clinical Signature (Clinic_Sig), Radiomics 
Signature (Rad_Sig) and the Deep Transformer Learning Signature (DTL_Sig). Additionally, we fused the Rad_Sig with 
the DTL_Sig to create the Deep Learning Radiomic Signature (DLR_Sig). We evaluated the prediction performance of 
the models using the Area Under the Curve (AUC), calibration curve, and Decision Curve Analysis (DCA).

Results The DLR_Sig showed a high level of accuracy and predictive capability, as demonstrated by the area under 
the curve (AUC) of 0.98(95% CI: 0.97–0.99) for the training cohort and 0.79(95% CI: 0.67–0.90) for the test cohort. 
In addition, the Hosmer-Lemeshow test, which provided p-values of 0.87 for the training cohort and 0.15 for the 
test cohort, respectively, indicated a good fit. DeLong test showed that the predictive effectiveness of DLR_Sig 
was significantly better than that of the Clinic_Sig(P < 0.05 both the training and test cohorts). The calibration plot 
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Introduction
Cervical cancer ranks fourth in prevalence among 
women globally and is the predominant gynecologic 
malignancy globally [1]. With the implementation of 
cervical cancer screening programs, a growing number 
of early-stage cervical cancer patients, categorized as 
stage IA to IIA according to The International Federa-
tion of Gynecology and Obstetrics (FIGO) classification, 
are being effectively managed. Surgical intervention is a 
viable option for these patients, although 20% may expe-
rience fatal pelvic recurrence [2]. Concurrent adjuvant 
radiochemotherapy significantly improved the 4-year 
Progression-Free Survival (PFS) from 63 to 80% and ele-
vated the 4-year Overall Survival (OS) from 71 to 81% 
among high-risk groups based on the Peter Standard with 
histologically confirmed positive pelvic lymph nodes, 
positive parametrial involvement, and/or positive surgi-
cal margin [3]. Studies GOG 49 and GOG 92 have dem-
onstrated that factors such as depth of tumor invasion 
(DOI), periuterine involvement, Lymphovascular Space 
Invasion(LVSI), tumor grade, and gross tumors have a 
significant impact on the risk of recurrence in cervical 
squamous cell carcinoma(CSCC); [4] Subsequently, the 
Sedlis standard was introduced, reducing the recurrence 
rates from 27.9 to 15.3% [5]. Postoperative radiotherapy 
is recommended for patients with early-stage cervical 
squamous cell carcinoma(ESCSCC) if their postoperative 
pathological features meet the Peter or Sedlis standard 
[6, 7]. A randomized study demonstrated that both radi-
cal surgery and radiotherapy yield comparable effective-
ness in the treatment of ESCSCC [8]. The combination of 
surgery and radiotherapy significantly heightens the risk 
of complications, including lower limb edema and uri-
nary system adverse events [2, 8]. Utilizing a biomarker, 
predicting the patients with high-risk pathological fea-
tures for adjuvant radiotherapy before surgery, is crucial 
for selecting the most suitable therapy for each patient, 
thereby ensuring optimal treatment outcomes with mini-
mal complications.

Recent studies have demonstrated significant advance-
ments in the application of artificial intelligence methods 
to the processing of medical images within the medi-
cal field, particularly in the diagnosis and treatment of 
malignant tumors [9–12]. Magnetic resonance imaging 
(MRI) is the optimal radiological approach for evaluating 

primary tumors larger than 10  mm in size [13]. Recent 
studies on MRI radiomics have demonstrated advance-
ments in predicting the tumor grade, DOI, LVSI, pelvic 
lymph node metastasis (LNM) and other postoperative 
pathological features in early-stage cervical cancer [14–
20]. In comparison to radiomics, deep-learning net-
works, such as convolutional neural networks, can be 
trained using end-to-end supervised methods. Simulta-
neously, it can learn highly distinctive image features and 
mitigate the influence of human judgment on radiologi-
cal features [21]. It offers a higher degree of flexibility and 
can be integrated into intricate models [22]. 

We hypothesized that MRI images of the intratumoral 
and peritumoral regions are indicative of the pathologi-
cal features for postoperative adjuvant radiotherapy in 
patients with ESCSCC. This study aims to investigate the 
feasibility of a Deep-Learning Radiomic Signature using 
intratumoral and peritumoral MRI images in order to 
predict the pathological features relevant to postopera-
tive adjuvant radiotherapy for ESCSCC.

Materials and methods
Study population
This retrospective study was approved by the Ethics 
Committee of The Tenth Affiliated Hospital, South-
ern Medical University(Dongguan People’s Hospital) 
(KYKT2022-062).

A total of 289 patients who underwent radical hysterec-
tomy and pelvic lymph node dissection during the period 
from January 2019 to April 2022 at The Tenth Affiliated 
Hospital, Southern Medical University(Dongguan Peo-
ple’s Hospital) were included in the study. These patients 
had complete MRI scans and were classified as stage IB1-
IIB based on the 2018 FIGO staging system. The inclusion 
criteria for the study were as follows: (1) patients who 
underwent a pelvic MRI examination within seven days 
prior to surgery, (2) availability of pathologic evaluation 
for variables including DOI, LVSI, LNM, tumor size, sur-
gical margin, and parametrium, (3) confirmation of post-
operative pathology showing squamous cell carcinoma 
(SCC), and (4) radical hysterectomy covering a minimum 
of the upper 3 to 4 cm of the vaginal cuff, parametria, and 
adjacent nodal basins (such as the external and internal 
iliac, obturator, and presacral nodes). Exclusion criteria 
for the study were as follows: (1) patients who received 

of DLR_Sig indicated excellent consistency between the actual and predicted probabilities, while the DCA curve 
demonstrating greater clinical utility for predicting the pathological features for adjuvant radiotherapy.

Conclusion DLR_Sig based on intratumoral and peritumoral MRI images has the potential to preoperatively predict 
the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma (ESCSCC).
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neoadjuvant chemotherapy, radiotherapy, or cervical 
conization treatment prior to surgery, (2) patients with 
tumors that were not visible on sagittal T2WI, due to 
the difficulties in accurately defining regions of interest 
(ROIs) for such tumors, (3) insufficient image quality for 
the extraction of radiomics features, and (4) patients who 
were either breastfeeding or pregnant. All patients were 
randomly divided into the training and validation cohorts 
with a 4:1 ratio.

A flowchart of this study is presented in Fig. 1.
We obtained clinical data from medical records, which 

consisted of information such as age, tumor size mea-
sured using MRI (referred to as maximal tumor diameter, 
MTD, on MR images of the largest lesions), presence of 
lymph node involvement (identified through MRI), pres-
ence of vaginal involvement (detected through MRI), 
parametrial invasion (assessed clinically through pal-
pation), and serum levels of various markers including 
squamous cell carcinoma antigen (SCC-Ag), white blood 
cells, neutrophils, lymphocytes, monocytes, erythro-
cytes, hemoglobin, thrombocytes, alkaline phosphatase 
(ALP), lactate dehydrogenase (LDH), albumin (ALb), 
creatinine, lymphocyte/monocyte ratio (LMR), and lym-
phocyte/neutrophil ratio (LNR). The need for adjuvant 
radiotherapy after surgery is mainly determined by post-
operative pathology and the clinical examination before 
surgery. Adjuvant radiotherapy is recommended as long 

as Peter’s standards are met: surgical margin, parame-
trium and lymph node. Cases that are negative for lymph 
node, margin, parametria comply with Sedlis’ standards, 
which are commonly utilized for determining postop-
erative treatment for ESCSCC: presence of LVSI, tumor 
invasion extending to the deep 1/3 of the stromal depth 
with any tumor size; presence of LVSI, tumor invasion 
extending to the middle 1/3 of the stromal depth with 
a tumor size of 2 cm or larger; presence of LVSI, tumor 
invasion extending to the superficial 1/3 of the stromal 
depth with a tumor size of 5  cm or larger; absence of 
LVSI, tumor invasion extending to the deep or middle 1/3 
of the stromal depth with a tumor size of 4 cm or larger.

MRI image acquisition protocol
All patients enrolled in the study underwent pelvic MRI 
using either an 18-channel abdominal-phased array coil 
with a 3.0T MRI scanner (Skyra, Siemens, Germany, 
N = 93, 32.18%) or a 1.5T-MRI scanner (Skyra, Siemens, 
Germany, N = 289, 67.82%). The MRI protocols employed 
included T1-weighted imaging (T1WI), T2-weighted 
imaging (T2WI), T2-weighted imaging with fat sup-
pression (T2fs), and contrast-enhanced T1-weighted 
imaging (CE-T1) in axial views. The imaging parame-
ters comprised a layer thickness of 5  mm, a layer inter-
val of 1.0  mm, a matrix size of 384 × 320, and a field of 
view (FOV) of 360  mm. Following sequence scanning, 

Fig. 1 Flow chart of the patient recruitment process
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a contrast medium of 0.1 mmol/kg was injected intra-
venously via the elbow at an injection speed of 3 mL/s. 
Subsequently, enhanced scanning was performed in axial 
views using a 3D-SPGR sequence with slice thicknesses 
of 3.0 mm and slice intervals of 1.0 mm.

Data preprocessing
Under different imaging panels, the range of pixel values 
of medical images varies significantly. To reduce the side-
effect of pixel value outliers, we sorted all the pixel values 
in each image and truncated the intensities to the range 
of 0.5 to 99.5 percentiles.

Regions of interest (ROI) are common with heteroge-
neous voxel spacing because of different scanners or dif-
ferent acquisition protocols. Such spacing refers to the 
physical distance between two pixels in an image. Spatial 
normalization reduces the effect of voxel spacing varia-
tion. In our experiment, we utilized a fixed resolution 
resampling method to address the these challenges.

Development of the ROI
The regions of interest (ROI) were manually delineated 
slice by slice on the ITK-snap software (version 3.0.0, 
www.itk-snap.org) by two radiation oncology specialists 
with over 10 years of experience. A radiologist with over 
15 years of experience validated the manual delineations.
The delineation of ROIs is stored in the NII format as a 
mask for subsequent analysis.

The original fragments of ROIs are expanded at one-
voxel intervals outside the tumor using the onekey 
platform.

Radiomics procedure
Feature extraction
The handcrafted features were divided into three groups: 
geometry, intensity and texture. We employed geometry 
to describe the three-dimensional shape characteristics, 
intensity to describe the first-order statistical distribution 
of voxel intensities, and texture to describe other features 
such as patterns, as well as the second- and high-order 
spatial distributions of intensities. Various methods, such 
as the gray-level co-occurrence matrix (GLCM), gray-
level run-length matrix (GLRLM), gray-level size-zone 
matrix (GLSZM), and gray-level dependence matrix 
(GLDM), were utilized to extract the texture features.

We obtained radiomics data from six modalities, 
including MRI images (CE T1, T2WI, T2fs) of both intra-
tumoral and peritumoral regions. We utilized the early 
fusion method to combine all radiomics features from 
different modalities, and then fed them into the subse-
quent process.

Feature selection
We conducted a test-retest analysis to evaluate the reli-
ability. Twenty patients were randomly selected from 
the dataset, and the tumor subregions of each patient 
were segmented twice by a specialist. Additionally, the 
ROI subregions of each patient were independently 
segmented by two radiation oncology specialists.The 
features extracted from these multiple-segmented sub-
regions were evaluated using the intraclass correlation 
coefficient (ICC). Features with an ICC greater than 0.85 
were considered to demonstrate favorable reproducibility 
and were selected for further analysis.

Mann-Whitney U test and feature screening were 
performed for all radiomic features. We retained only 
features with a p-value less than 0.05. Spearman’s rank 
correlation coefficient was also used to assess the cor-
relation between features, and we kept only one of the 
features when the correlation coefficient exceeded 0.9. 
To ensure the most comprehensive depiction of features, 
we employed a greedy recursive deletion strategy for fea-
ture filtering. This involved removing the feature with the 
highest redundancy in the current set every time it was 
used. Adjusting regulation weights λ, LASSO shrunk all 
regression coefficients to zero and accurately set the coef-
ficients of unrelated features to zero. We employed the 
10-fold cross validation with minimum standards to find 
the optimal λ, the final value that generated the minimum 
cross validation error. The retained non-zero coefficient 
features were combined and used to create a radiomics 
signature through regression model fitting. Next, we 
gained the radiomics score for each patient through a lin-
ear combination of preserved features that were weighted 
using their model coefficients. We conducted the Python 
scikit-learn package provided by the onekey-platform for 
LASSO regression modeling.

Deep learning procedure
In our study, four pre-trained CNN models (resnet50, 
resnet101, inception_v3, densenet121) were specifi-
cally chosen for their effectiveness in handling the ILS-
VRC-2012 dataset. We chose the slice that exhibited the 
largest tumor area to represent each patient. We used 
min-max transformation to normalize the gray values 
to range [-1, 1]. Next, we cropped each subregion image, 
resizing to 224 × 224 with nearest interpolation. The 
obtained images can be used as the model input.

To mitigate data leakage in the image data, we metic-
ulously adjusted the learning rate to enhance general-
ization. The cosine decay learning rate algorithm was 
implemented for this purpose. The specific learning rate 
utilized is presented below:
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ηimin = 0 , ηimax  =0.01, Ti = 50 refers to the minimum 
learning rate, the maximum learning rate, and the num-
ber of iteration epochs, respectively. Because the back-
bone takes pre training parameters, in order to ensure 
the migration effect, we used Tcur =

1
2
Ti to fine tune the 

parameters of the backbone part. Therefore, the back-
bone part’s learning rate is as follows:

 
ηbackbonet =

{
0 if Tcur ≤ 1

2
Ti

ηimin +
1
2
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ηimax − ηimin

) (
1 + cos
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Tcur
Ti

π
))

if Tcur >
1
2
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Other hyperparameter configurations included: opti-
mizer: SGD, loss function: sigmoid cross entropy.

Signature building
Clinical/Radiomics Signature After conducting Lasso 
feature selection, we fed the final features into MLP 
machine-learning models to build risk models. To obtain 
the final Clinic/Rad Signature, we employed 5-fold cross-
validation in this study.

Deep Transformer Learning Signature Among the 
four models, ResNet101 model has the best predictive 
performance (Supplementary Table 2). We utilized the 
ResNet101 model as the base model for our Deep Trans-
fer Learning Signature (DTL_Sig) to estimate the prob-
ability of each sample. To obtain the final prediction, we 
employed a fusion method called stacking. Specifically, 
we trained each model individually and then utilized the 
late fusion method to evaluate deep learning as features. 
Finally, we utilized MLP to generate the final prediction.

Deep-Learning Radiomic Signature In the process 
of constructing the Deep Learning Radiomics Signature 
(DLR_Sig), we combined the Radiomics Signature and 
Deep Transformer Learning Signature using a logistic 
regression model.
A five-fold cross-validation method was employed, and 
the test cohort was fixed to ensure fair comparisons. 
To assess the efficiency of each signature, we selected 
the best model from the construction process of each 
signature.

Statistical analysis
Receiver Operating Characteristic (ROC) curves were 
plotted to evaluate the diagnostic performance of the sig-
natures in both the training and test cohorts. The ROC of 
these models were compared using the DeLong test [23]. 
Calibration curves and the Hosmer-Lemeshow analyti-
cal fit were used to assess the calibration performance of 
the signatures. We employed the Mapping decision curve 
analysis (DCA) to evaluate the clinical utility of the four 
signatures.

All data analyses were conducted using Python 3.7.12 
on the OnekeyAI platform 3.1.8. For statistical analyses, 
we used statsmodels version 0.13.2. The χ² test was uti-
lized for discrete variables, while the independent sample 
t-test was applied to continuous variables to compare the 
clinical characteristics of patients. The pyradiomics pack-
age version 3.0.1 was used to extract radiomics features. 
Machine learning algorithms such as support vector 
machines (SVMs) were implemented using the scikit-
learn package version 1.0.2. Additionally, deep learning 
models were developed based on torch version 1.11.0, 
utilizing cuda 11.3.1 and cudnn8.2.1. P-values < 0.05 were 
considered statistically.

The progress of signature building and comparison was 
displayed in Fig. 2.

Results
Feature statistics
Clinical features statistics
The patients had an average age of 49.30 years, with an 
average MRI tumor size (MTD) of 3.24 cm. Among the 
patients, 112 (38.75%) were positive for vaginal involve-
ment, 43 (14.88%) were positive for pelvic lymph node 
involvement through MRI, and 17 (5.88%) showed 
parauterine invasion through clinical palpation before 
surgery. There were significant differences in the distri-
bution of age (p = 0.03), SCC-Ag (p < 0.001), MTD-MRI 
(p < 0.001), and Lymph node-positive MRI (p < 0.001) 
between the adjuvant and non-adjuvant radiotherapy 
groups. No significant differences were found in other 
characteristics between the two groups, including vaginal 
involvement (MRI), parametrial invasion (clinical palpa-
tion), and serum levels of white blood cells, neutrophils, 
lymphocyte, monocytes, erythrocytes, hemoglobin, 
thrombocytes, ALP, LDH, ALb, creatinine, LMR, and 
LNR (Table 1). As displayed in Table 1, the clinical char-
acteristics in the training and test groups were balanced, 
and there was no statistical difference between the two 
groups.

No linear relationship exists between these clinical fea-
tures. The Spearman correlation coefficients between the 
four features and postoperative adjuvant radiotherapy are 
illustrated in Supplementary Fig. 1.

Radiomics features statistics
A total of 84 shape features, 2160 first-order features, 
and 8160 texture features were extracted(Supplemental 
Fig.  2). The shape features were described using geom-
etry, while the first-order features were described using 
intensity measures, specifically: gray-level co-occurrence 
matrix (GLCM), gray-level run length matrix (GLRLM), 
gray level size zone matrix (GLSZM), and Gray Level 
Dependence Matrix (GLDM). We extracted all hand-
crafted features using a custom feature analysis program 
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implemented in Pyradiomics.(http://pyradiomics.
readthedocs.io).

Finally, a total of 49 features of non-zero coefficients 
were selected to establish the Rad-score with a LASSO 
logistic regression model, including 21 intratumoral 
features, 28 peritumoral features, 15 features of CE-T1 
sequences, 21 features of T2WI sequences, and 13 fea-
tures of T2fs sequences. The number and ratio of each 
group of handcrafted features, all features and corre-
sponding p-value results, coefficients of 10-fold cross 
validation, MSE (mean standard error) of 10-fold cross 
validation were displayed in Supplemental Fig. 3. The his-
togram of the Rad_Sig based on the selected features is 
displayed in Fig. 3.

Deep transformer learning signature
We employed the Resnet101 model for the DTL_Sig, 
which focused on CE T1, T2WI, T2fs within the peri-
tumoral ROI. Among these, modal T2WI achieved 
the highest AUC of 0.76 (95%CI: 0.64–0.89) in our test 
cohort (Supplemental Table 2).

Signature comparation
DLR_Sig achieved an AUC of 0.98 (95% CI: 0.97-1.00) 
in the training cohort and 0.79 (95% CI: 0.67–0.90) in 
the test cohort. DTL_Sig obtained AUCs of 0.93 (95% 
CI: 0.90–0.96) in the training cohort and 0.77 (95% CI: 
0.65–0.89) in the test cohort. Rad_Sig yielded AUCs of 
0.97 (95% CI: 0.95–0.99) in the training cohort and 0.71 
(95% CI: 0.58–0.85) in the test cohort. Clinic_Sig yielded 

AUCs of 0.64 (95% CI: 0.57–0.71) in the training cohort 
and 0.53 (95% CI: 0.38–0.68) in the test cohort. DLR_Sig 
demonstrates the highest efficiency in predicting adju-
vant radiotherapy (see Fig. 4). According to Table 2, the 
p-values of the DeLong test between Clinic_Sig and the 
other models were all less than 0.05, indicating a sig-
nificant difference in predictive performance between 
Clinic_Sig and the other models in the training/test 
cohort. The above AUCs indicate that Rad_Sig, DTL_Sig, 
and DLR_Sig are more effective at predicting pathologi-
cal features of adjuvant radiotherapy than Clinic_Sig. The 
DeLong test showed that there is no significant difference 
among the predictive effectiveness of Rad_Sig, DTL_Sig, 
and DLR_Sig, although the AUC values of these models 
gradually improve. Figure  5 presents the calibration of 
the four signatures. Specifically, the calibration plot of 
the DLR_Sig is very close to the ideal curve, indicating 
excellent consistency between the actual and predicted 
probabilities of the pathological features of adjuvant 
radiotherapy. The DLR_Sig displayed excellent calibra-
tion, as demonstrated by the non-significant p-values 
of 0.87 in the training cohort and 0.15 in the test cohort 
according to the Hosmer-Lemeshow test. Figure  6 dis-
plays the decision curve analysis (DCA) for the four mod-
els. The DCA curve indicates that using the DTL_Sig to 
predict the pathological features of adjuvant radiotherapy 
has a high net clinical benefit in the large threshold prob-
ability interval (training set: 0.05–0.90, validation set: 
0.30–0.75). This is much higher than that of “treat none” 
(no pathological features of adjuvant radiotherapy) and 

Fig. 2 Schematic illustration of the Signature Building and Comparation

 

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io


Page 7 of 12Zhang et al. BMC Women's Health          (2024) 24:182 

“treat all” (all pathological features of adjuvant radiother-
apy) groups, as well as Clinic_Sig. All the four models’ 
efficiency to predict the pathological features of adjuvant 
radiotherapy is displayed in the Supplementary Table 3.

Discussion
In our study, we first conducted a screening of the fac-
tors pertinent to the pathological features of adjuvant 
radiotherapy. Subsequently, we employed a machine-
learning approach called MLP, to develop a clinical pre-
dictive model.Our study revealed a correlation between 
SCC-AG, MTD-MRI, and the presence of positive lymph 
nodes on MRI as risk factors. SCC-Ag serves as an early 
tumor marker for clinical staging and enables monitor-
ing of treatment responses in case of relapse [24]. The 

serum level of SCC-Ag proves useful in predicting opti-
mal strategies for postoperative adjuvant therapy [25, 26]. 
Additionally, it exhibits a close correlation with lymph 
node status [27]. MRI is the optimal imaging modality for 
assessing tumor size, involvement of vaginal and periph-
eral tissues [28, 29], interstitial infiltration, and lymph 
node metastasis in cervical cancer [30]. Implementing a 
preoperative MRI-based classification strategy reduces 
the necessity of triple therapy for stage IB cervical cancer 
[31]. However, the Clinic_Sig, which consists of SCC-AG, 
tumor size, and positive lymph nodes on MRI, exhibited 
subpar performance (AUC of 0.64 in the training cohort 
and 0.53 in the test cohort) in accurately predicting 
radiotherapy options for ESCSCC.

Table 1 Clinical features of patients in training cohort and test cohort
Variable All cohort Training cohort Test cohort P-value* P-val-

ue**no AR 
(n = 101)

AR(n = 130) P no AR 
(n = 25)

AR (n = 33) P-value

Age(year)*** 49.30 ± 10.16 48.64 ± 11.14 50.58 ± 9.38 0.10 45.52 ± 8.56 49.12 ± 10.59 0.15 0.13 0.03
parametrial invasion-
clinical palpation

0.15 1.00 1.00 0.14

No ( n, % ) 272 (94.12) 98(97.03) 119(91.54) 24(96.00) 31(93.94)
Yes ( n,% ) 17 (5.88) 3(2.97) 11(8.46) 1(4.00) 2(6.06)
MTD-MRI(cm) 3.24 ± 1.41 2.85 ± 1.34 3.45 ± 1.33 < 0.001 2.84 ± 1.42 3.88 ± 1.53 0.02 0.21 < 0.001
vagina-positive MRI 0.79 0.53 0.76 1.00
No ( n,% ) 177 (61.25) 64(63.37) 79(60.77) 13(52.00) 21(63.64)
Yes ( n,% ) 112 (38.75) 37(36.63) 51(39.23) 12(48.00) 12(36.36)
Lymph node-positive 
MRI

0.01 0.13 0.44 < 0.001

No ( n,% ) 246 (85.12) 94(93.07) 105(80.77) 23(92.00) 24(72.73)
Yes ( n,% ) 43 (14.88) 7(6.93) 25(19.23) 2(8.00) 9(27.27)
MRI scanner 0.78 1.00 0.56 0.79
3.0 T ( n,% ) 93(32.18) 30(29.70) 42(32.31) 9(36.00) 12(36.36)
1.5 T ( n,% ) 196(67.82) 71(70.30) 88(67.69) 16(64.00) 21(63.64)
White blood 
cell(×109/L)***

9.94 ± 3.46 9.96 ± 3.40 10.08 ± 3.05 0.57 10.05 ± 3.88 9.23 ± 4.68 0.49 0.63 0.92

Neurtophil(×109/L)*** 8.01 ± 3.41 7.99 ± 3.49 8.07 ± 3.06 0.63 8.27 ± 3.80 7.68 ± 4.20 0.56 0.87 0.89
Lymphocyte(×109/L)*** 1.31 ± 0.56 1.32 ± 0.59 1.37 ± 0.59 0.55 1.21 ± 0.44 1.15 ± 0.34 0.48 0.10 0.77
Erythrocytes(×1012/L)*** 3.69 ± 0.66 3.77 ± 0.59 3.75 ± 0.59 0.73 3.52 ± 0.65 3.29 ± 0.93 0.15 < 0.001 0.41
Hemoglobin(G/L)*** 104.68 ± 18.45 106.55 ± 16.71 105.32 ± 17.08 0.44 105.72 ± 11.45 95.64 ± 28.61 0.09 0.23 0.17
Thrombocyte(×109/L)*** 220.58 ± 70.43 217.62 ± 62.25 233.42 ± 72.41 0.11 202.28 ± 60.00 192.97 ± 83.40 0.77 0.05 0.21
ALP(U/L)*** 53.76 ± 39.09 49.97 ± 39.92 59.08 ± 39.32 0.11 49.96 ± 31.81 47.33 ± 39.60 0.9 0.21 0.15
LDH(U/L)*** 121.56 ± 82.38 113.15 ± 85.56 130.84 ± 79.93 0.12 125.62 ± 76.71 107.67 ± 85.11 0.59 0.59 0.26
ALb(G/L)*** 28.14 ± 17.78 26.69 ± 18.91 29.57 ± 16.66 0.86 30.41 ± 17.16 25.23 ± 18.97 0.37 0.78 0.80
Creatinine(mmol/L)*** 30.62 ± 29.57 25.49 ± 29.13 35.27 ± 29.68 0.03 37.32 ± 28.54 22.95 ± 28.06 0.07 0.72 0.23
SCC-Ag(ng/mL)*** 3.45 ± 6.51 1.86 ± 2.41 4.86 ± 8.67 < 0.001 2.10 ± 1.96 3.82 ± 6.30 0.92 0.47 < 0.001
Mononuclear 
cell(×109/L)***

0.52 ± 0.28 0.52 ± 0.22 0.52 ± 0.34 0.27 0.50 ± 0.19 0.54 ± 0.27 0.97 0.73 0.30

LMR*** 2.96 ± 1.71 2.84 ± 1.39 3.20 ± 2.03 0.42 2.75 ± 1.42 2.58 ± 1.31 0.63 0.21 0.62
LNR*** 0.23 ± 0.20 0.22 ± 0.19 0.22 ± 0.19 0.89 0.22 ± 0.22 0.26 ± 0.27 0.73 0.88 0.80
AR: adjuvant radiotherapy; MTD-MRI:maximal tumor diameter on MR images of the largest lesions; ALP: alkaline phosphatase; LDH: lactate dehydrogenase ALb: 
albumin; SCC-Ag: squamous cell carcinoma antigen; LMR: lymphocyte/monocyte ratio; LNR: lymphocyte/neutrophil ratio;P-value*: the difference of each clinical 
variable between the training and test cohorts; P-value**: the difference of each clinical variable between no adjuvant radiotherapy group and adjuvant radiotherapy 
group. P < 0.05 indicates statistically significant. ***: mean, standard deviation.
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The T2-weighted sequences are considered the most 
effective for detecting cervical tumors and their exten-
sion to the uterus, parametria, and adjacent organs. 
Meanwhile, the axial T1-weighted sequence is useful for 
detecting suspicious pelvic and abdominal lymph nodes. 
The European Society of Urogenital Radiology (ESUR) 
recommends an optimized MRI protocol for staging 
uterine cervical cancer, which includes both T2-weighted 
and T1-weighted sequences [32]. Next, We selected 
three MRI sequences (T2WI, T2fs,CE-T1) for acquiring 
magnetic resonance images. We used MLP to establish 
the Rad_Sig to analyze intratumoral and peritumoral 
multi-sequence MRI image, Resnet101 for DRL_Sig to 
analyze within peritumoral multi-sequence MRI image.
In order to evaluate pathological features of adjuvant 
radiotherapy for ESCSCC management, we integrated 
Rad_Sig and DRL_Sig by stacking them, resulting in the 
final prediction termed DTL_Sig. Currently, numerous 
studies involve the utilization of MRI or other imaging 
techniques to predict postoperative risk factors in early-
stage cervical cancer using traditional radiomics or deep 

learning models. Liu Y [14] obtained notable outcomes 
by employing the LASSO method to extract radiomic 
features from MRI images of T2/SPAIR and CE T1WI. 
Furthermore, they utilized a radiomic signature to dis-
criminate between adenocarcinoma and squamous cell 
carcinoma, as well as high-to-moderately and poorly 
differentiated tumors. Wu Q et al. [15] utilized multipa-
rametric MRI radiomics to evaluate tumor grade, LVSI, 
and LNM, yielding favorable outcomes. Preoperative 
MRI-based radiomics exhibited strong predictive perfor-
mance for LNM in patients with cervical cancer [16, 20], 
even in cases where pelvic lymph nodes appeared normal 
in size [19]. Compared to radiologists, radiomics signa-
ture based on MRI demonstrates superior preoperative 
diagnostic capabilities for DOI in early cervical cancer 
[17]. The multiparametric radiomic features extracted 
from preoperative MR images accurately predicted the 
presence of LVSI in patients with cervical cancer [18]. 
Deep learning models based on CT/MRI images accu-
rately predict LNM [33] or vascular space involvement 
in patients with cervical cancer prior to surgery [34]. The 

Fig. 3 The histogram of the Radiomics Signature based on the selected features
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approach we proposed demonstrated excellent predic-
tive performance, as evidenced by the detection of AUC 
curves, calibration curves, and decision curve analysis. 
The AUCs values in both the training cohort and the 
test cohort suggest that DLR_Sig can reliably differenti-
ate between patients who require adjuvant radiotherapy 
before surgery and those who do not, as it demonstrates 
a high accuracy and predictive capability. The DeLong 
test further indicates that the difference in AUC between 
Clinic_Sig and DLR_Sig is statistically significant, while 
the Hosmer Lemeshow test showed that DLR_Sig had a 
good fit with a p-value greater than 0.05. The main reason 
for this is the DLR_Sig, deep-learning-based radiomics of 

intratumoral and peritumoral MRI images, which pro-
vide a large amount of information and greatly improve 
the accuracy of predicting postoperative pathologi-
cal features. The three models, Rad_Sig, DTL_Sig, and 
DLR_Sig, showed a gradual improvement trend in their 
performance. However, the information complementar-
ity brought about by the application of artificial intelli-
gence methods in image processing is far less significant 

Table 2 Delong test of different signatures
Clinic_Sig vs. 
Rad_Sig

Clinic_Sig vs. 
DTL_Sig

Clinic_Sig vs. 
DLR_Sig

Rad_Sig vs. 
DTL_Sig

Rad_Sig vs. 
DLR_Sig

DTL_
Sig vs. 
DLR_Sig

Training Cohort < 0.05 < 0.05 < 0.05 0.07 < 0.05 < 0.05
Test Cohort < 0.05 < 0.05 < 0.05 0.51 0.07 0.72

Fig. 5 The calibration curves of different signatures on the training(a)/
test cohort (b)

 

Fig. 4 The AUCs of different signatures on the training (a)//test cohort (b)
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than that of Radiomics models and clinical models. This 
may explain why there was no significant statistical dif-
ference among the three models despite their gradual 
improvement trend. In particular, the DCA curve of 
DLR_Sig demonstrates greater clinical utility for predict-
ing the pathological features for adjuvant radiotherapy. 
Early-stage cervical cancer with identified risk factors 
presents a significant likelihood of recurrence following 
surgery and should be considered for postoperative adju-
vant radiotherapy. Currently, there is no mature method 
to accurately determine whether postoperative adju-
vant radiotherapy is needed before surgery. In compari-
son to previous investigations, this study constitutes the 
first attempt to investigate the feasibility of a radiomics 
model based on multimodal MRI images for predicting 
the pathological features of adjuvant radiotherapy. This 
innovative approach aims to identify patients with high-
risk pathological features for adjuvant radiotherapy, in 
order to avoid the adverse effects of multiple treatments 

by directly undergoing curative radiotherapy instead of 
surgery.

Our research offers the advantage of evaluating both 
intratumoral and peritumoral MRI images, providing a 
comprehensive analysis. While most studies have pre-
dominantly focused on the intratumoral region, emerging 
evidence suggests that imaging features of peritumoral 
regions can provide valuable information regarding out-
comes. Intratumoral and peritumoral CT Radiomics 
enhances the predictive performance in estimating com-
plete pathological response after neoadjuvant chemo-
radiation in patients with esophageal squamous cell 
carcinoma with an AUC of 0.852 (95% CI, 0.753–0.951) 
[35]. Radiomics based on peritumoral and intratumoral 
MRI demonstrates an AUC of 0.924 − 0.875 when evalu-
ating lymph node metastasis (LNM) in pancreatic cancer, 
and an AUC of 0.944 − 0.892 for assessing histological 
grade [36]. Perilesional radiomics features improved the 
discrimination ability of the radiomics signature in diag-
nosing prostate cancer [37]. Radiomics, based on intra-
tumoral and peritumoral functional parametric maps 
obtained from Breast DCE-MRI, demonstrate predictive 
capabilities for HER-2 and Ki-67 statuses with respective 
AUC values of 0.713 and 0.749 [38]. Cui L conducted a 
study where a radiomics nomogram, utilizing MRI fea-
tures from peritumoral regions and the degree of cellular 
differentiation, was able to predict LVSI in patients with 
cervical cancer, yielding an AUCs of 0.788 − 0.711 [39]. 
Shi J [40] obtained AUCs of 0.891 − 0.804 in preoperative 
prediction of lymph node metastasis using MRI-based 
peritumoral radiomics, MR-reported LN status and 
tumor diameter in early-stage cervical cancer.

Research has demonstrated an inflammatory response 
around tumors [41], peritumoral lymphatic vessel density 
[42], Intratumoral CD8 and peritumoral Foxp3 [43] are 
closely related to the physiology of the cervix, response 
to treatment, and prognosis. This could be the biologi-
cal basis for predicting the pathological characteristics 
of postoperative adjuvant radiotherapy in ESCSCC using 
peritumoral MRI images.

Limitation
We encountered the following limitations. Firstly, data 
was obtained from a single center; The lack of exter-
nal validation could render the signatures over fit. Thus, 
studies obtaining data from many centers are required to 
remedy this. Secondly, previous studies have shown the 
value of dynamic contrast enhanced (DCE) and diffu-
sion-weighted imaging (DWI) in predicting pathological 
features of CSCC [15, 44]. However, we used only T2WI, 
T2fs, and CE-T1 images in axial views in our retrospec-
tive study. Prospective multicenter studies with larger 
samples are therefore required to validate the robust-
ness and reproducibility of the current research. Finally, 

Fig. 6 The decision curves of different signatures on the training(a)/test 
cohort (b)
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due to the limited sample with genetic data, we did not 
provide genomic characteristics in our study. To advance 
the field, it is advisable to integrate genomic features, 
radiomics signatures, and clinical characteristics into 
records in future study.

Conclusion
DLR_Sig, which is based on intratumoral and peritu-
moral MRI images, significantly outperforms Clinic_Sig 
in predicting the pathological features of adjuvant radio-
therapy in early-stage cervical squamous cell carcinoma 
(ESCSCC). This finding may provide valuable guidance 
for clinicians and patients in selecting appropriate treat-
ment options.
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