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Abstract 

Background  Given the significant role of immune-related genes in uterine corpus endometrial carcinoma (UCEC) 
and the long-term outcomes of patients, our objective was to develop a prognostic risk prediction model using 
immune-related genes to improve the accuracy of UCEC prognosis prediction.

Methods  The Limma, ESTIMATE, and CIBERSORT methods were used for cluster analysis, immune score calculation, 
and estimation of immune cell proportions. Univariate and multivariate analyses were utilized to develop a prognostic 
risk model for UCEC. Risk model scores and nomograms were used to evaluate the models. String constructs a pro-
tein-protein interaction (PPI) network of genes. The qRT-PCR, immunofluorescence, and immunohistochemistry (IHC) 
all confirmed the genes.

Results  Cluster analysis divided the immune-related genes into four subtypes. 33 immune-related genes were used 
to independently predict the prognosis of UCEC and construct the prognosis model and risk score. The analysis 
of the survival nomogram indicated that the model has excellent predictive ability and strong reliability for predicting 
the survival of patients with UCEC. The protein-protein interaction network analysis of key genes indicates that four 
genes play a pivotal role in interactions: GZMK, IL7, GIMAP, and UBD. The quantitative real-time polymerase chain 
reaction (qRT-PCR), immunofluorescence, and immunohistochemistry (IHC) all confirmed the expression of the afore-
mentioned genes and their correlation with immune cell levels. This further revealed that GZMK, IL7, GIMAP, and UBD 
could potentially serve as biomarkers associated with immune levels in endometrial cancer.

Conclusion  The study identified genes related to immune response in UCEC, including GZMK, IL7, GIMAP, and UBD, 
which may serve as new biomarkers and therapeutic targets for evaluating immune levels in the future.
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Introduction
The probability of uterine corpus endometrial carci-
noma (UCEC) is 4.4%, with a mortality rate second only 
to cervical and ovarian cancer [1]. The global incidence 
rate of UCEC is increasing, and patients affected by it are 
gradually becoming younger [2]. UCEC may be related to 
family heredity, menstrual history, reproductive history, 
exogenous estrogen, aging, and other factors. There are 
two types of pathogenesis: namely hormone-dependent 
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and hormone-independent [3]. However, the patho-
genesis of UCEC remains unclear. UCEC has no obvi-
ous clinical symptoms in the early stage, but develops 
with irregular vaginal bleeding, vaginal discharge, lower 
abdominal pain, and other symptoms [4]. Early diag-
nosis of UCEC is relatively straightforward. However, 
patients in late stages or experiencing recurrence have 
lower treatment efficacy and prognosis [5]. Therefore, it 
is extremely important to explore the prognostic genes 
related to UCEC diagnosis.

It was found that there were stromal sells of endo-
metrial carcinoma, VEGF, IGF-I, and other related 
inflammatory factors. These immune cells and related 
inflammatory factors can stimulate the endogenous anti-
tumor immune response [6]. The immune microenviron-
ment of UCEC changes significantly, which affects the 
occurrence and progression of the endometrial cancer. 
To predict the survival of patients with UCEC and pro-
vide guidance for immunotherapy. The Immune-Related 
Risk Score Model (IRSM) is an independent predictor 
of adverse prognosis and reflects patient sensitivity to 
chemotherapy [7]. We aimed to analyze patient informa-
tion to construct a risk prediction model based on the 
UCEC immune gene.

Materials and methods
Data source
The GDCRNA Tools package in R was utilized to acquire 
the following data from the TCGA database for UCEC: 
RNA-seq data, clinical information (such as age, sex, 
race, and tumor stage), and survival information. The 
dataset comprised 578 samples, including 520 primary 
cancer samples, 23 paired cancer tissue precancerous 
lesion samples, and 12 precancerous lesion samples.

The analysis dataset was randomly selected to includ 
40% of the primary cancer samples, while the remain-
ing samples were used as the validation set for the sub-
sequent analysis. The ImmPort and InnateDB databases 
were used to download immune gene sets. There is only 
one mRNA dataset published by the UCEC, and there is 
no survival information available in the GSE database. 
mRNA expression data was downloaded from the TCGA 
database.

Analysis of differential immune genes and identification 
of immune subtypes in UCEC
Differential gene analysis was conducted between the 
sample dataset and the immune gene set using the limma 
method. The analysis was performed with the gdcDEA 
analysis function included in the GDCRNA Tools pack-
age. To enhance accuracy, the differential immune gene 
analysis data set was used to build a model, which was 
applied with the R package Consensus Cluster Plus 

(http://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
Conse​nsusC​luster Plus.html) for consistency cluster 
analysis. Set the parameters as follows: max K = 10 (maxi-
mum number of clusters to evaluate) and reps = 100 
(number of subsamples). Select the most appropriate 
number of clusters and categorize the samples into dis-
tinct subtypes. PCA was used to verify the reliability of 
the classification.

Survival analysis and immune cell infiltration analysis 
of various immune subtypes
The ESTIMATE algorithm was used to score all cancer 
tissue samples, including the validation set, and to com-
pare differences in immune scores. The CIBERSORT 
algorithm was used to assess the proportion of immune 
cells in all cancer tissue samples, including validation 
set samples. It was also used to analyze the correlation 
between clinical indicators, immune score, and the pro-
portion of immune cells in each subtype.

Functional analysis of representative genes of each 
subtype
The rank-sum test was used to compare the expression of 
the identified differential genes in one subtype with that 
in all samples excluding this subtype. Significantly high 
expression is characteristic of the immune gene in this 
subtype, and the p-value of the differentially expressed 
gene was corrected by using the False Discovery Rate 
(Benjamini-Hochberg method). Genes identified by 
KEGG and GO (biological processes (BP), celluar com-
ponents (CC), and molecular functions (MF)) analysis 
(FDR < 0.05) were selected from each subtype.

Construction of prognostic risk model and effect 
evaluation
A prognostic risk model of UCEC was developed and 
evaluated through univariate and multivariate analyses 
using the gene set specific to each subtype (p < 0.05) along 
with survival data. The study compared the differences in 
survival rates between the high- and low-risk groups and 
assessed the accuracy of the prediction model using the 
ROC curve. A nomogram and its calibration curve were 
used to evaluate the independent predictive ability of the 
model. Correlation analyses were conducted between the 
risk score and clinical indicators in the dataset.

Validation data set validation risk model
The survival disparities between the high- and low-risk 
samples of the validation dataset were compared. Nom-
ograms and calibration curves were used to validate the 
prediction effect of the model. The correlation between 
the risk score and clinical indicators in the validation 
dataset was analyzed.

http://bioconductor.org/packages/release/bioc/html/ConsensusCluster
http://bioconductor.org/packages/release/bioc/html/ConsensusCluster
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Patient sample collection and validation
This study was approved by the Ethics Committee of 
Yunnan Cancer Hospital (KYLX2023-008) and informed 
consent was obtained from patients. Collect endome-
trial cancerous tissue and adjacent normal tissue from 
patients undergoing surgery for UCEC at Yunnan Cancer 
Hospital (n = 10).

The qRT-PCR validation was performed using a kit 
(Thermo Fisher) to extract RNA, reverse transcribe it 
into cDNA, and then validate the expression levels using 
PCR (Takara). PCR primers (Table  1) were synthesized 
by Tsingke Biotechnology (Beijing). The expression levels 
of genes and key immune cell marker proteins in tissues 
were detected using immunofluorescence and immuno-
histochemistry kits (Abcam).

Results
Differential analysis of immune genes and identification 
of molecular subtypes
RNA-seq data (n = 578), clinical information, and sur-
vival data were retrieved from the TCGA database. The 
validation dataset was randomly obtained from the pri-
mary cancer samples (n = 208), while the remaining sam-
ples comprised the analysis set (n = 312). After analyzing 
the samples in the dataset and examining 2687 immune 

Table 1  Primer sequence for qRT-PCR experiment

Genes Forward primer (5’ − 3’) Reverse primer (5’ − 3’)

UBD CCG​TTC​CGA​GGA​ATG​GGA​TTT​ GCC​ATA​AGA​TGA​GAG​GCT​
TCTCC​

GIMAP7 GCT​CCC​TGA​GGA​TCG​TTC​TG GCC​CTG​GAG​TGT​CTA​CAA​CAAG​

GZMK GGG​GCT​TAT​ATG​ACT​CAT​
GTGTG​

GTG​GAT​CAA​TCA​GAA​CAC​CTCC​

IL-17 TCC​CAC​GAA​ATC​CAG​GAT​GC GGA​TGT​TCA​GGT​TGA​CCA​TCAC​

Fig. 1  Differential analysis and molecular subtype identification of immune genes. A volcanic map of immune genes differentiable expressed 
in samples of the analysis set. B Delta Area Plot (K compared with k-1, the relative change of area under CDF curve (except k = 2)). C Matrix heat-map 
at k = 4. D Consistent cumulative distribution function (CDF) diagram. E PCA analysis. The coordinate axis represents the two components (PC1 
and PC2) that can best reflect the difference of samples. The scale on the coordinate axis is the relative distance, and the percentage represents 
the contribution rate of components
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genes, 502 differentially expressed immune genes were 
identified. Among these, 213 were upregulated, and 289 
were downregulated (Fig.  1A). Cluster analysis revealed 
that the number of clusters was determined to be four 
through consistent cluster analysis, and the samples 
were divided into four subtypes (Fig. 1B, C, D). The PCA 
results revealed that the contribution rate of the first 
principal component was 8.4%, the second principal 
component was 11.4%, and the cumulative contribution 
rate was 19.8%. There were significant differences among 
subtypes (p < 0.01), which were consistent with the results 
of the hot spot clustering analysis, confirming that the 
clustering was more reliable (Fig. 1E).

Correlation analysis of immune cell infiltration and clinical 
data of different immune subtypes
Significant differences were found among four different 
subtypes. The survival prognosis of Cluster 1 was poor, 
whereas that of Clusters 2, 3, and 4 was relatively good 
(Fig.  2A). The immune infiltration estimate scores (esti-
mate score, immune score, stromal score, and tumor 
purity) exhibited significant differences among the four 
subtypes (p < 0.05, Fig.  2B). The IBERSORT algorithm 
results illustrate significant differences among the pro-
portions of immune cells of various subtypes (Fig.  2C), 
such as T cells regulatory (Tregs, p < 0.0001), Dendritic 
cells activated, macrophages M2, T cells CD4 memory 
activated, T cells CD4 naive (p < 0.001), dendritic cells 
resting and plasma cells (p < 0.01), mast cells resting, neu-
trophils, T cells CD4 memory resting (p < 0.05). The cor-
relation between clinical indices of immune cell content 
varied among the four subtypes. The correlation between 
age and activated NK cells, macrophages M1, and acti-
vated mast cells was significant in Cluster 1. Additionally 
T cells CD4 memory cells and activated CD4 memory 
cells were significantly correlated survival time (Fig. 2D). 
Macrophage M2 survival time was significantly cor-
related with neutrophils with tumor stage in cluster 2 
(Fig.  2E). Activated dendritic cells were significantly 
negatively correlated with patient age; CD4 memory acti-
vated T cells, regulatory T cells (Tregs), and resting NK 
cells were significantly correlated with tumor stage; CD4 
memory activated T cells, Monocytes, and macrophages 
M1 were significantly correlated with death in Cluster3 
(Fig. 2F). No immune cells showed a significant correla-
tion in cluster 4.

The construction and inspection of the risk model
The genes of each subtype sample and corresponding 
survival information were selected (p < 0.05). A total of 
423 genes were identified through Cox univariate analy-
sis, and 111 were found to be significantly associated 

with Cox multivariate analysis. These genes were utilized 
to develop the prognostic risk model of UCEC. 33 genes 
significantly related to prognosis were obtained from 
the prognosis model: BACH2, TRAIP, CD22, TYMP, CP, 
IL16, TRIM22, TNFRSF9, ESRRG, BCL2A1, CD300LF, 
UBD, GIMAP6, TEK, P2RY1, GZMK, CXCL14. The 
risk coefficients for these genes are negative. Addition-
ally, ITGA7, APOBEC3G, GIMAP7, PLAUR, CLEC10A, 
IRF8, PIK3CG, IL7, SLAMF8, IL32, PIGR, IL20RA, 
ENTPD3, RORA, TCF4, and BMP4 have positive risk 
coefficients.These genes were used to construct the prog-
nostic model, and the risk score was calculated. There 
was a significant difference in survival information 
(p < 0.01) and the expression of model genes between the 
high- and low-risk groups (Fig. 3A, B). The AUC values 
for neutron patients in the ROC curve at 1, 3, and 5 years 
were 0.701, 0.710, and 0.710, respectively. These values 
indicate that the model has excellent predictive ability for 
the survival of patients with UCEC (Fig. 3C).

Risk model score and clinical phenotype: The predic-
tive effect of the prognostic model was assessed through 
univariate and multivariate analyses. The nomogram and 
calibration curve indicate that the predicted survival 
probability aligns with the actual survival probability, 
demonstrating high discrimination and consistency in 
the model (Fig. 3D, E, F, G).

The survival of patients in the high- and low-risk 
groups was significantly different (p < 0.05, Fig. 4A), and 
the expression of model genes in the validation set was 
consistent with the data expression in the analysis set 

Riskscore = 87.27599 ∗ BACH2+ (−56.46586) ∗ ITGA7

+ 114.95244 ∗ TRAIP

+ 39.74974 ∗ CD22+ (−62.18227) ∗ APOBEC3G

+ (−50.56456) ∗ TYMP

+ 42.81239 ∗ CP + (−134.50287) ∗ GIMAP7

+ 114.05254 ∗ IL16+ 37.54081 ∗ TRIM22

+ 48.44374 ∗ TNFRSF9+ (−58.51865) ∗ PLAUR

+ (−28.30332) ∗ CLEC10A+ (−74.32458) ∗ IRF8

+ (−104.01011) ∗ PIK3CG + 33.11365 ∗ ESRRG

+ (−40.15244) ∗ IL7+ 46.05381 ∗ SLAMF8

+ (−31.07377) ∗ IL32

+ 47.34628 ∗ BCL2A1+ 57.04739 ∗ CD300LF

+ (−27.76801) ∗ PIGR+ (−35.04120) ∗ IL20RA

+ 31.03771 ∗ UBD + (−27.16797) ∗ ENTPD3

+ 173.91240 ∗ GIMAP6

+ 89.16563 ∗ TEK + 47.68613 ∗ P2RY 1

+ (−62.95033) ∗ RORA+ (−104.39359) ∗ TCF4

+ (−41.07853) ∗ BMP4 + 43.22891 ∗ GZMK

+ 31.27623 ∗ CXCL14
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Fig. 2  Survival analysis of different immune subtypes, analysis of immune cell infiltration, and function analysis of representative genes of each 
subtype. A Survival analysis of KM in different immune subtypes. B Box plot of score and purity of each subtype. C all cancer tissues have a box plot 
of the proportion of immune cells in the sample. D, E, F, scatter diagram of correlation analysis between clinical indexes and immune cell content 
of samples in each subtype. *, p < 0.05, * *, p < 0.01, * * *, p < 0.001, * * * *, p < 0.0001
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(Fig. 4B); In the ROC curve, the AUC values for UCEC 
patients in the next 1, 3, and 5 years were 0.684, 0.694, 
and 0.628, respectively. These values indicate that the 
prognosis model has excellent prediction accuracy, 
with the best prediction effect observed for the 5-year 
prognosis (Fig. 4C). Univariate and multivariate analy-
ses were conducted on the prognostic model gene by 
examining the risk score and clinical phenotype. The 
results showed a significant between the tumor stage, 
risk score, and prognosis (p < 0.05). The nomogram and 
calibration curve showed that the relationship between 
the predicted survival probability and the actual sur-
vival probability was the same, and the prediction effect 
of 5 years was the best (Fig. 4D, E, F, G).

Risk score and immune function analysis of risk model 
gene in the analysis set
There were significant differences in the scores and 
immune infiltration scores between the high-risk and 
low-risk groups (p < 0.05), but there were no significant 
differences in stromal cell scores, immune and stromal 
comprehensive scores, and tumor sample purity (p < 0.01, 

Fig.  5A). Macrophages M1 (p < 0.0001), naïve B cells, 
eosinophils, resting NK cells, T cells CD4 memory rest-
ing, macrophages M1 (p < 0.05), and macrophages M2, 
mast cells activated, and Plasma cells (p < 0.01) showed 
significant differences, while the other immune cells did 
not exhibit any variation (Fig. 5B).

Functional analysis of representative genes of each 
subtype
The results of GO analysis indicated that the interacting 
genes were involved in 662 GO classifications of model 
genes. The results of different subtypes GO analysis 
showed that 237 pathways were enriched in cluster 1, 
including 204 biological processes (BP), 8 celluar com-
ponents (CC), and 25 molecular function (MF)-related 
pathways; 437 pathways were enriched in cluster 2, 
including 415 BP, 4 CC, and 18 MF-related pathways; and 
754 pathways were enriched in cluster 3, including 714 
BP, 4 CC, and 36 MF-related processes. 49 pathways were 
enriched in cluster 4, including 46 BP and three MF-
related processes.

Fig. 3  Construction of prognostic risk model of representative genes of each subtype. A there were differences in survival between high 
and low-risk groups. B Heat map of differential gene expression in high and low-risk samples. C ROC curve. D Survival nomogram. E, F, and G are 
nomogram calibration curves for 1-, 3- and 5-years respectively
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Fig. 4  Validation of the prediction effect of a risk model. A there were differences in survival between high and low-risk groups. B Heat map 
of differentially expressed genes in high and low-risk samples. C ROC curve of 1-, 3- and 5-years. D Survival nomogram. E, F, and G represent 1-, 
3- and 5-year nomograph calibration curves. H, Gene interaction network diagram

Fig. 5  Correlation Analysis of risk model gene, risk score, and clinical phenotype. A Box chart of high and low-risk group scores. B Box diagram 
of the proportion of immune cells in high and low-risk groups. *p < 0.05, * *, p < 0.01, * * *, p < 0.001, * * * *, p < 0.0001
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Fig. 6  KEGG bubble diagrams of representative genes and protein-protein interaction networks of key genes. A-D represents KEGG bubble 
diagrams of representative genes in Cluster 1(A), cluster 2(B), Cluster 3(C), and Cluster 4(D)respectively; E Analysis of protein-protein interaction 
networks of key genes. The lines represent the interactions between them, on the left are genes that interact in the database, and on the right are 
off genes that have interactions in the database. The colors represent their degree values, from blue to yellow, the blue color the more in the core 
position, and the more the color the smaller the degree value
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KEGG analysis illustrated that 27, 48, 67, and 9 path-
ways were significantly enriched in clusters 1, 2, 3, and 4, 
respectively. Among them, the cytokine receptor interac-
tion, MAPK signaling pathway, NF-κB signaling pathway, 
and PI3K/Akt signaling pathway contained the most dif-
ferentially expressed genes (Fig. 6A, B, C, D).

Analysis of protein‑protein interaction networks of key 
genes
The results of the protein-protein interaction network 
analysis of key genes indicated that the top four pivotal 
genes for interactions were GZMK, IL7, GIMAP, and 
UBD in 33 key genes. The databases with strong interac-
tions with key genes were CD4, IL2, CTNNB1, PTPRC, 
and CXCL9 (Fig. 6E).

Validation of hub genes expression in UCEC patients
qRT-PCR detection revealed that the level of UBD in 
cancer tissue was significantly higher than that in adja-
cent tissues, while the levels of GZMK, GIMAP7, and 
IL-17 in cancer tissue were significantly lower than 

those in adjacent tissues (Fig.  7A, B, C, D). The IHC 
detection results of UBD, GZMK, and GIMAP7 are 
consistent with qRT-PCR results, indicating that UBD 
may promote poor prognosis in UCEC, high expression 
levels of GZMK, GIMAP7, and IL-17 is an indicator of 
a favorable prognosis in patients.

The results of immune cell analysis indicate that 
Macrophages M1 and activated mast cells are immune 
cells with significant differences. Our immunofluores-
cence test results indicate that the surface marker pro-
tein CD80 of Macrophages M1 is highly expressed in 
cancer tissue, and Macrophages M1 is associated with 
the development of UCEC (Fig. 8A). However, the sur-
face marker protein FCER1A, activated by mast cells, 
is expressed at low levels in cancer tissue and high 
levels in adjacent tissues (Fig.  8B). This suggests that 
mast cell activated by FCER1A may enhance the body’s 
immunity.

Fig. 7  Clinical sample validation of hub genes.  A-D, qRT-PCR was used to detect the expression of four hub genes in cancer and adjacent tissues 
of UCEC patients; E, IHC detection of UBD, GZMK, and GIMAP7 expression. *p  < 0.05, * *, p  < 0.01, * * *, p  < 0.001, * * *, p  < 0.001
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Discussion
The high mortality rate of UCEC is largely due to 
untimely diagnosis and poor treatment outcomes. In 
recent years, changes in the management of UCEC have 
highlighted the significant role of biological and genetic 

patterns in the treatment of the disease [8]. More and 
more researchers aim to enhance the quality of treatment 
for UCEC. Our aspiration for the future is to develop the 
most effective treatment methods tailored to each patient 
[9]. Immune score was used to score and predict the 

Fig. 8  Clinical sample validation related to immune cell surface marker levels.  A Immunofluorescence detection of CD80 expression; 
B Immunofluorescence detection of FCER1A levels. *p  < 0.05, * *, p  < 0.01, * * *, p  < 0.001, * * *, p  < 0.001
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overall survival of patients with colorectal cancer, Sub-
sequently, it was also applied in the treatment of diffuse 
large B-cell lymphoma (DLBCL), melanoma, and other 
types of tumors [10, 11]. At present, the immune scoring 
system serves as a tumor prognostic factor that has been 
integrated into the traditional tumor staging system. It 
has become a crucial component of routine tumor diag-
nosis and prognosis evaluation. In our study, we analyzed 
the relationship between immune genes and patients 
with UCEC using various database systems. The results 
indicated significant differences in survival and immune 
function, which showed varying correlations with clinical 
indicators. This is consistent with previous research [12].

Previous studies have demonstrated that the tumor’s 
tolerance to the stressful environment determines its 
malignancy and response to treatment [13]. Addition-
ally, the MAPK pathway is closely related to the growth 
of UCEC cells. Some studies have found that MAPK is 
overexpressed in UCEC, which is closely related to the 
growth, proliferation, and migration of UCEC cells [14]. 
In this study, the KEGG analysis also indicated that the 
abnormally expressed genes in endometrial carcinoma 
were significantly enriched in the MAPK signaling path-
way. In addition, it is significantly enriched in cytokine 
receptor interaction, the NF-κB signaling pathway, and 
the PI3K-Akt signaling pathway [15].

Construction of a protein-protein interaction network 
revealed that the immune genes GZMK (Granzyme K), 
IL7 (Interleukin-7), GIMAP (GTPases of immunity-
associated proteins), and UBD (Ubiquitin D) may be 
the central genes regulated by the network. The GZMK 
gene product is a member of a group of serine proteases 
found in cytoplasmic granules of cytotoxic lymphocytes. 
Related to serine-type endopeptidase activity and serine-
type peptidase activity. GZMK is a crucial gene involved 
in the regulating of cytotoxic T cells in colorectal cancer 
[16]. However, no study has yet shown its immunomodu-
latory function in endometrial carcinoma. IL7 encodes 
a protein that is crucial for the development of B and T 
cells. Studies have indicated that IL7 is involved in the 
AKT2 signaling pathway, which is consistent with the 
pathway enriched in our KEGG analysis [17]. GIMAP is 
under-expressed in a variety of cancers, correlates with 
a favorable patient prognosis and immune-related path-
ways, and positively correlates with the abundance of 
CD8 + and CD4 + T cells [18]. Significant differences 
in CD4 + T cells were also found between the high- and 
low-risk groups in this study. GIMAP plays a crucial 
role in the development of breast cancer and lung can-
cer and is closely linked to immune cell infiltration and 
the expression of immune components. This association 
is expected to serve as a marker and offer guidance for 
targeted therapies [19, 20]. UBD is highly expressed in 

multiple cancers, promotes colorectal cancer cell growth, 
and enhances chemotherapy resistance in breast can-
cer [21, 22]. In addition, CD22 is ubiquitous in normal 
B cells and B-cell malignancies and is regulated through 
downstream NF-κB pathways [23]. PIK3CG regulates the 
PI3K-Akt/PKB pathway and affects rectal cancer pro-
gression. Thus, PIK3CG may be a potential therapeutic 
target for prostate cancer [24, 25]. This study suggests 
that PIK3CG may regulate the progression of UCEC 
by controlling the PI3K-Akt signaling pathway. Studies 
have shown that Adriamycin (ADR) can treat endome-
trial cancer [26], and that TEK promotes the metastatic 
effects of ADR on breast cancer cells [27], suggesting that 
TEK may promote the effectiveness of ADR in treating 
endometrial cancer.

Many disease studies have found that predicting tumors 
and cancer can be realized through a risk prediction 
model, such as for prostate cancer [28]. The use of nomo-
grams provides individualized prognostic risk assess-
ment, which provides a reference for individual clinical 
decision-making. It has been used in pancreatic cancer, 
breast cancer, cervical cancer, and other diseases [29–31]. 
The model constructed in this study was verified using 
a nomogram and calibration curve, and it was found to 
have excellent prediction accuracy. Previous studies have 
constructed an mRNA-miRNA-lncRNA network and 
indicated that the pyroptosis-related genes GPX8 and 
TIRAP are also involved in regulating the number and 
function of CD8 + cells [32]. Prognostic models of UCEC 
based on hypoxia molecules [33] and metabolism-related 
genes have also been constructed using the TCGA data-
base. All of these models indicate a correlation between 
immune infiltrating cells and immune functions [34, 35]. 
The risk model we constructed also plays a role in patient 
prognosis, although the genes exported from the model 
have not yet been validated experimentally and clinically 
validated.

Conclusion
Using the prognostic model developed in this study, we 
can enhance predictions for patients with endometrial 
cancer based on the key genes GZMK, IL7, GIMAP, and 
UBD. It is essential to clearly understand the patient’s 
disease status as it can help improve the patient’s quality 
of life and guide the selection of more suitable treatment 
methods.
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