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Abstract
Objective Breast cancer has become the most prevalent malignant tumor in women, and the occurrence of distant 
metastasis signifies a poor prognosis. Utilizing predictive models to forecast distant metastasis in breast cancer 
presents a novel approach. This study aims to utilize readily available clinical data and advanced machine learning 
algorithms to establish an accurate clinical prediction model. The overall objective is to provide effective decision 
support for clinicians.

Methods Data from 239 patients from two centers were analyzed, focusing on clinical blood biomarkers (tumor 
markers, liver and kidney function, lipid profile, cardiovascular markers). Spearman correlation and the least absolute 
shrinkage and selection operator regression were employed for feature dimension reduction. A predictive model 
was built using LightGBM and validated in training, testing, and external validation cohorts. Feature importance 
correlation analysis was conducted on the clinical model and the comprehensive model, followed by univariate and 
multivariate regression analysis of these features.

Results Through internal and external validation, we constructed a LightGBM model to predict de novo bone 
metastasis in newly diagnosed breast cancer patients. The area under the receiver operating characteristic curve 
values of this model in the training, internal validation test, and external validation test1 cohorts were 0.945, 0.892, and 
0.908, respectively. Our validation results indicate that the model exhibits high sensitivity, specificity, and accuracy, 
making it the most accurate model for predicting bone metastasis in breast cancer patients. Carcinoembryonic 
Antigen, creatine kinase, albumin-globulin ratio, Apolipoprotein B, and Cancer Antigen 153 (CA153) play crucial roles 
in the model’s predictions. Lipoprotein a, CA153, gamma-glutamyl transferase, α-Hydroxybutyrate dehydrogenase, 
alkaline phosphatase, and creatine kinase are positively correlated with breast cancer bone metastasis, while white 
blood cell ratio and total cholesterol are negatively correlated.
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Background
As the most common malignancy in women, breast can-
cer (BC) accounts for 30% of all cancers in females [1]. 
While its mortality rate ranks fourth, the number of 
new deaths is increasing most significantly [2]. This may 
be attributed to a continual decline in fertility rates and 
an increase in body weight [3]. In China, there are over 
410,000 new cases of breast cancer and over 110,000 
related deaths annually [4]. In recent years, the incidence 
of distant metastasis recurrence in BC patients remains 
high, serving as an adverse prognostic indicator.

For distant metastasis, the bone is the most common 
site, with over 60% of BC patients experiencing bone 
metastasis [5]. In Western countries, approximately 
3.5–10% of all newly diagnosed breast cancer patients 
are diagnosed with distant metastasis [6]. For initially 
diagnosed metastatic breast cancer, this implies fewer 
treatment options and shorter survival times. Stage IV 
breast cancer is also a significant public health concern 
in many developed countries, exacerbated in resource-
poor areas due to a lack of screening programs and early 
detection methods, resulting in many patients present-
ing with metastases at diagnosis [7]. Furthermore, while 
the 5-year overall survival rate for BC patients without 
metastasis exceeds 80% [8], distant metastasis signifi-
cantly reduces this rate to only around 25% [9]. Nota-
bly, the 5-year overall survival rate for bone metastasis 
(BM) is even lower, at only about 22.8% [10]. Therefore, 
early identification of breast cancer bone metastasis has 
become a crucial issue that clinicians must address.

Currently, the identification and diagnosis of bone 
metastasis primarily rely on imaging techniques such as 
X-rays, bone scintigraphy, computed tomography, mag-
netic resonance imaging (MRI), and positron emission 
tomography-computed tomography. Among these, X-ray 
examination is the most widely used and cost-effective 
method in China. However, despite its high specificity, 
X-rays have low sensitivity, making it difficult to detect 
early metastatic lesions [11]. Moreover, other imag-
ing tests suffer from unequal distribution of medical 
resources, equipment limitations, and high costs. Even in 
some developed regions, over-testing may occur without 
prior evaluation, leading to prolonged average hospital 
stays and increased hospital costs.

For clinicians, treating diseases requires individual-
ization, advocating for precision medicine. Currently, 
precision medicine has evolved around four concepts: 

predictiveness, personalization, prevention, and par-
ticipation [12]. Big data analysis techniques are becom-
ing essential in clinical practice [13], indicating the need 
to utilize advanced technology to analyze vast amounts 
of medical data and provide recommendations for indi-
vidualized treatment. Many studies have used machine 
learning techniques to investigate clinical risk factors 
associated with cancer metastasis to achieve early detec-
tion [14–16]. In recent years, several breast cancer bone 
metastasis (BCBM) prediction models have been devel-
oped using factors such as age, gender, race, treatment, 
and grade as predictive factors [17, 18]. However, these 
models still have specific areas for improvement in prac-
ticality and accuracy. This study aims to establish a more 
accurate clinical model, incorporating as many effective 
variables as possible.

Regarding model development, although nomograms 
are currently the most commonly used predictive mod-
els, machine learning is increasingly favored by medical 
professionals for its practicality, innovation, and accu-
racy. This study is based on common inpatient labora-
tory indicators in the real world, requiring no related 
pathological examination or imaging assessment, thus 
reducing the threshold for model establishment. Through 
horizontal comparison of multiple indicators, a reliable 
BCBM prediction model has been developed.

Ultimately, our goal is to stratify the risk of bone 
metastasis in breast cancer patients, assisting clinicians, 
especially primary breast specialists, in making decisions 
to alleviate unnecessary medical burdens on patients and 
greatly improve their quality of life.

Materials and methods
Patient population
This retrospective study included data from two medical 
centers, approved by the institutional review boards of 
both centers. Inclusion criteria were as follows: (1) clear 
diagnosis of primary breast cancer with de novo bone 
metastasis; (2) completion of clinical blood biomarker 
testing before treatment (radiotherapy or chemother-
apy) or surgical resection; (3) no history of hypertension, 
diabetes, or hyperlipidemia; (4) no history of abnormal 
blood indicators related to liver, kidney, or cardiovascular 
function; (5) no history of other diseases. Exclusion cri-
teria were as follows: (1) occurrence of distant metasta-
sis after treatment (surgical resection or chemotherapy); 
(2) incomplete clinical blood biomarker data, including 

Conclusion This study successfully utilized clinical blood biomarkers to construct an artificial intelligence model for 
predicting distant metastasis in breast cancer, demonstrating high accuracy. This suggests potential clinical utility in 
predicting and identifying distant metastasis in breast cancer. These findings underscore the potential prospect of 
developing economically efficient and readily accessible predictive tools in clinical oncology.
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tumor markers (Alpha-fetoprotein (AFP), Carcinoem-
bryonic Antigen (CEA), Cancer Antigen 125 (CA125), 
Cancer Antigen 153 (CA153), and Cancer Antigen 199 
(CA199)), liver function tests, kidney function tests, lipid 
profile, or cardiovascular function tests; (3) age less than 
18 years old; (4) occurrence of metastasis in sites other 
than bones.

The study involved breast cancer cases from two 
research centers. One center included 176 cases, ran-
domly divided at an 8:2 ratio into training (123 cases) 
and test (53 cases) cohorts. Another center provided 63 
cases as an external validation cohort. The internal vali-
dation cohort (test cohort) consisted of data from the 
same medical center as the training cohort, character-
ized by similar clinical treatment processes and data col-
lection standards, which facilitated the evaluation of the 
model’s robustness and performance in similar clinical 
environments. The external validation cohort came from 
a geographically proximate but different medical cen-
ter, validating the model’s generalizability across differ-
ent institutions and patient populations. The purpose of 
selecting these two validation cohorts was to comprehen-
sively assess the reliability and applicability of the model 
under diverse conditions. The distribution details of the 
study are provided in Table 1. The workflow of the model 
in this study is illustrated in Fig. 1.

Feature extraction and selection
The features included from clinical blood biomarkers 
comprised tumor markers (AFP; CEA; CA125; CA153; 
CA199), liver function indicators (total bilirubin, direct 
bilirubin, indirect bilirubin, total protein, albumin, glob-
ulin, albumin-globulin ratio, gamma-glutamyl transfer-
ase, prealbumin, aspartate transaminase (AST), alanine 
transaminase (ALT), AST/ALT ratio, alkaline phospha-
tase, cholinesterase, and total bile acid), kidney function 
indicators (urea, creatinine, uric acid, blood bicarbon-
ate concentration, cystatin C, potassium ion, sodium 
ion, chloride ion, calcium ion, and inorganic phospho-
rus), lipid profile (total cholesterol, triglycerides, high-
density lipoprotein cholesterol, low-density lipoprotein 
cholesterol, apolipoprotein A1, apolipoprotein B, A1/B 
ratio, and lipoprotein (a)), and cardiovascular func-
tion indicators (creatine kinase, creatine kinase isoen-
zyme MB (CK-MB), lactate dehydrogenase (LDH), and 
α-Hydroxybutyrate dehydrogenase (α-HBDH)).

All extracted features underwent the following opera-
tions: first, Z-Score standardization (mean = 0, standard 
deviation = 1) was applied to normalize each feature, pre-
processing the data to fit a standard normal distribution. 
Then, statistical analysis was conducted using Spearman 
rank correlation coefficient (ρ) to measure the correla-
tion between two variables. ρ is a non-parametric statisti-
cal measure of the strength of a monotonic relationship 

between two variables. When ρ approaches 1 or -1, it 
indicates a strong correlation between the variables. 
We chose ρ > 0.9 as the threshold for high correlation. 
High correlation means that the variables exhibit very 
consistent trends, which can lead to multicollinearity 
issues. Highly correlated features can introduce redun-
dant information, increase model complexity, and affect 
the stability and interpretability of the model. When the 
Spearman correlation coefficient between features was 
> 0.9, one of the features was retained, as keeping only 
one variable with a correlation coefficient greater than 
0.9 helps reduce redundancy and improve the model’s 
generalizability.

Finally, feature dimension reduction was conducted 
using L1 regularization of the Least Absolute Shrinkage 
and Selection Operator (LASSO) regression. The LASSO 
method penalizes the absolute values of regression coef-
ficients, thereby inducing some coefficients to be zero, 
facilitating feature selection and generating a sparse 
model. In LASSO regression, the choice of lambda (λ) is 
critical as it controls the strength of the penalty applied 
to regression coefficients. A higher lambda increases 
the penalty, leading more coefficients to shrink to zero, 
simplifying the model but posing a risk of underfitting. 
Conversely, a lower lambda reduces the penalty, poten-
tially including more features but risking overfitting to 
the training data. Our 10-fold cross-validation process 
helped identify a lambda value that generalizes well to 
unseen data. We selected the lambda parameter by per-
forming 10-fold cross-validation on the training set, 
choosing the value that minimized mean squared error. 
This approach ensures an optimal balance between 
model complexity and predictive performance, aiding in 
preventing overfitting.

Development and validation of models
In this study, the LightGBM machine learning algorithm 
was employed to construct models for breast cancer with 
and without bone metastasis as binary outcome vari-
ables, using the selected features for dimension reduc-
tion. Model construction was completed based on 5-fold 
cross-validation in the training set. After model con-
struction, validation was conducted in both internal and 
external testing cohorts. Model performance was evalu-
ated using metrics such as the area under the receiver 
operating characteristic curve (AUC), accuracy, sensi-
tivity, specificity, positive predictive value, and negative 
predictive value. Subsequently, decision curve analysis 
(DCA) was performed to reflect the net benefit at differ-
ent threshold probabilities in the training and internal 
and external validation cohorts, evaluating the clinical 
efficiency of the model.
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Statistical analysis
Clinical baseline features were analyzed using t-tests, chi-
square tests, or Fisher’s exact tests with SPSS software 
(version 25.0, IBM). The t-test was used for continuous 
variables with homogeneity of variance, represented as 
x ± s, while the chi-square test or Fisher’s exact test was 
used for categorical variables, represented as ratios. A 
two-tailed p-value < 0.05 indicated statistical significance. 
Spearman rank correlation tests, z-score normalization, 
univariate regression analysis, multivariate regression 
analysis, output of feature importance for LightGBM 
models, and LASSO regression analysis were performed 
using Python software (version 3.7.17; http://www.
python.org). ROC curves and clinical decision curves 
were also plotted.

Results
Patient characteristics
This study involved a total of 239 female breast cancer 
patients from two research centers. One center contrib-
uted 123 cases to the training cohort, 53 cases to the test-
ing cohort, and the other center provided 63 cases for the 
test1 cohort. In the baseline characteristic analysis of the 
study population, statistically significant differences were 
observed in one, two, or three cohorts for various blood 
biomarkers including CEA, CA153, total bilirubin, direct 
bilirubin, indirect bilirubin, albumin, globulin, albumin/
globulin ratio, gamma-glutamyl transferase, total bile 
acid, prealbumin, aspartate transaminase, alanine trans-
aminase, aspartate/alanine ratio, alkaline phosphatase, 
magnesium ion, creatine kinase, LDH, α-HBDH, total 
cholesterol, apolipoprotein A1, apolipoprotein B, and 
lipoprotein a. A summary of patient clinical blood bio-
marker features is presented in Table 1.

Feature selection
Feature data were normalized, and features with a Spear-
man correlation coefficient > 0.9 were retained. The heat-
map illustrating the correlation analysis of features is 
shown in Supplementary Fig.  1. Dimension reduction 
was performed by eliminating features with zero coeffi-
cients using LASSO regression. The optimal λ value was 
determined based on the minimum mean squared error, 
and the Lasso regression model was fitted accordingly 
(Fig. 2a). After feature dimension reduction, 15 features 
were selected for each cohort (Fig. 2b).

Fig. 2 Illustrates the process of feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. (a) LASSO coef-
ficients for different λ values, where vertical dashed lines indicate the number of features corresponding to the optimal λ value. (b) After feature selection 
using LASSO regression, the nonzero coefficient features are showed

 

Fig. 1 The workflow of LightGBM model in this study

 

http://www.python.org
http://www.python.org
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Model construction and validation
The LightGBM machine learning algorithm was utilized 
to construct predictive models for breast cancer bone 
metastasis using the selected features. The ROC curve 
results of the LightGBM model are shown in Fig.  3a. 
The ROC of the LightGBM model in the training, test, 
and test1 cohorts were 0.945 (95% CI 0.910–0.981), 
0.892 (95% CI 0.813–0.971), and 0.908 (95% CI 0.836–
0.980), respectively. The ROC of the combined model 
in the training, test, and test1 cohorts were 0.955 (95% 
CI 0.934–0.976), 0.835 (95% CI 0.739–0.931), and 0.918 
(95% CI 0.856–0.981), respectively. Other performance 
parameters are presented in Table 2.

The DCA curves of the LightGBM model in the train-
ing, test, and test1 cohorts are shown in Fig. 4. The results 
indicate that the LightGBM model demonstrates good 

net benefits in identifying breast cancer bone metastasis 
across all three cohorts.

Feature importance analysis and logistic regression 
analysis
To identify features crucial for predicting bone metasta-
sis in the LightGBM model, feature importance analysis 
was conducted, as shown in Fig.  5a. The top 5 features 
with relatively high impact on the labels in the Light-
GBM model were CEA, creatine kinase, albumin/globu-
lin ratio, apolipoprotein B, and CA153. Univariate and 
multivariate regression analyses were performed on 
the features involved in the model, with odds ratios and 
p-values displayed in Fig.  5b and c. In the univariate 
regression analysis, p-values of albumin-globulin ratio, 
total cholesterol, lipoprotein a, CA153, gamma-glutamyl 

Table 2 Performance of models for predicting discrimination between breast cancer with bone metastasis and breast cancer without 
bone metastasis in training, test, and test1 cohorts
Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV Precision Recall F1 Threshold
LightGBM Training 0.945 (0.910–0.981) 0.870 0.850 0.889 0.879 0.862 0.879 0.850 0.864 0.455

Test 0.889 (0.800–0.978) 0.811 0.923 0.704 0.750 0.905 0.750 0.923 0.828 0.379
Test1 0.908 (0.836–0.980) 0.841 0.774 0.906 0.889 0.806 0.889 0.774 0.828 0.559

AUC Area under the curve; PPV Positive predictive value; NPV Negative predictive value; F1 F1 Score

Fig. 4 Clinical decision curves analysis (DCA) for the LightGBM models constructed in the training (a), test (b), and test1 (c) cohorts were demonstrated

 

Fig. 3 Evaluation of Receiver Operating Characteristic curves for the LightGBM models constructed in both the training (a), test (b) and test1 (c) cohorts 
were presented
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transferase, α-HBDH, alkaline phosphatase, and creatine 
kinase were < 0.05, suggesting potential associations with 
breast cancer metastasis. Among these, lipoprotein a, 
CA153, gamma-glutamyl transferase, α-HBDH, alkaline 
phosphatase, and creatine kinase were positively corre-
lated, while white blood cell count and total cholesterol 
were negatively correlated.

In the multivariate analysis, albumin-globulin ratio and 
total cholesterol had p-values < 0.05 and were negatively 
correlated. CK-MB, CA153, and alkaline phosphatase 
were positively correlated.

Discussion
In this study, we utilized the LightGBM algorithm to con-
struct a predictive model for identifying breast cancer 
patients with bone metastasis based on relatively easily 
accessible clinical blood biomarker features. The model 
demonstrated favorable performance in both internal and 
external testing cohorts. Our predictive model effectively 
distinguished breast cancer patients with bone metastasis 
from those without, providing clinicians with additional 
evidence to facilitate more efficient triage management in 
breast cancer diagnosis and treatment.

Most previous studies on predicting breast cancer 
distant metastasis have focused on assessing the risk of 
metastasis occurrence. Delpech et al. developed and 
validated nomograms for predicting bone metastasis in 
early-stage breast cancer patients based on clinical and 
pathological variables, with C-indexes of 0.69 and 0.73 
in the training and validation cohorts, respectively [19]. 
Similarly, Xu et al. constructed nomograms for predicting 
bone metastasis in breast cancer patients based on clini-
cal and pathological variables, with C-indexes of 0.714 
and 0.705 in the training and validation cohorts, respec-
tively [20]. Zhang et al. incorporated MRI and ultrasound 
features into prognostic nomograms for predicting dis-
tant metastasis in breast cancer, achieving C-indexes of 
0.882 and 0.812 in the training and validation cohorts, 
respectively [21]. Additionally, Wang et al. utilized gene 

expression data from the National Center for Biotechnol-
ogy Information Gene Expression Omnibus to construct 
prognostic nomograms for predicting lung metastasis 
risk in breast cancer, achieving C-indexes of 0.862 and 
0.772 in the training and validation cohorts, respectively 
[22].

However, fewer predictive models have been developed 
specifically for diagnosing breast cancer distant metasta-
sis. Wen-Cai et al. developed a web-based predictor using 
the XGBoost model to forecast the risk of bone metasta-
sis in breast invasive ductal carcinoma patients based on 
factors such as diagnostic age, race, gender, grade, T/N 
staging, breast subtype, and marital status. The XGBoost 
model exhibited the best predictive performance among 
six different machine learning algorithms, with an AUC 
of 0.888, accuracy of 0.803, sensitivity of 0.801, and speci-
ficity of 0.837 [23]. Similarly, based on the Surveillance, 
Epidemiology, and End Results database, Xuguang et al. 
constructed diagnostic and prognostic models for breast 
cancer bone metastasis using the XGBoost algorithm, 
which achieved the highest accuracy (diagnostic model 
AUC = 0.98; prognostic model AUC = 0.88) [24]. How-
ever, these models often lack commonly available clinical 
indicators such as blood routine and biochemical param-
eters, which may limit their real-world applicability and 
require further validation.

This study represents the first attempt to construct 
a diagnostic predictive model for breast cancer bone 
metastasis using relatively easily accessible clinical blood 
biomarkers reflecting heart, liver, and kidney function. 
These biomarkers are typically part of routine admis-
sion tests for patients, providing real-time physiological 
information and offering cost-effective and easy-to-oper-
ate advantages compared to pathological examinations, 
imaging studies, or genetic tests. Additionally, our model 
underwent external validation at another research cen-
ter and demonstrated satisfactory performance, with 
an AUC of 0.908. This external validation not only 
enhanced the credibility of our research findings but also 

Fig. 5 Feature importance analysis of LightGBM model (a) and univariate (b) and multivariate (c) logistic regression analysis of variables (features) in-
volved in LightGBM model
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demonstrated the model’s robustness and generalizability 
across different datasets.

In contrast to the relatively high-performing XGBoost 
model [25], this study employed the LightGBM machine 
learning algorithm. LightGBM exhibited greater flex-
ibility and efficiency in feature processing and model 
construction, capable of handling complex nonlinear 
relationships better, thereby enhancing the model’s pre-
dictive accuracy and generalization capability. Despite 
achieving an AUC of over 0.9 in predicting breast cancer 
bone metastasis in our study, direct comparison of these 
AUC values with those of other models is not appropriate 
due to differences in variables and machine learning algo-
rithms used. This diagnostic predictive model based on 
clinical blood biomarkers offers a novel and cost-effective 
approach for early detection of breast cancer bone metas-
tasis. It not only contributes to improving personalized 
treatment management for breast cancer patients but 
also enhances the accuracy and efficiency of early inter-
vention in clinical practice. Future research could further 
expand sample sizes and conduct multicenter validations 
to further verify the model’s robustness and broad appli-
cability, thereby advancing its clinical implementation.

CK-MB was identified as one of the most important 
features in the LightGBM model prediction. As a creatine 
kinase isoenzyme, CK-MB exists mainly in the myo-
cardium and skeletal muscle and has been found to be 
elevated in the serum of late-stage cancer patients com-
pared to early-stage patients [26]. Previous studies have 
shown that serum CK-MB activity is significantly higher 
in patients with metastatic tumors compared to primary 
tumors [27]. However, further research is needed to elu-
cidate why CK-MB elevation occurs in breast cancer 
patients with distant metastasis [26] and whether the 
elevated CK-MB originates from tumors or other sources 
[28]. α-HBDH, another important feature in our model, 
is an LDH isoenzyme that has been associated with 
prognosis in various malignant tumors [29–31]. In early 
breast cancer diagnosis, α-HBDH, CEA, and CA125 have 
been shown to have certain value when used in combina-
tion [32]. CA153, a common tumor marker, has predic-
tive capabilities for breast cancer distant metastasis and 
was also identified as an important feature in our model 
[33].

Although we successfully constructed a predictive 
model for breast cancer bone metastasis using clinical 
blood biomarkers and demonstrated good predictive 
performance and external validation results, we still face 
several potential limitations and challenges. Firstly, we 
only focused on the most common type of breast cancer 
distant metastasis—bone metastasis. Thus, we did not 
consider other types of distant metastasis such as brain 
metastasis and post-treatment breast cancer metasta-
sis [34]. Secondly, although our external validation set 

originates from different medical centers within the same 
geographical region, these data still have limitations. 
Similar patient demographics and treatment protocols 
may restrict the model’s generalizability globally. Future 
research should incorporate more extensive multi-center, 
geographically diverse external validation sets to further 
validate the model’s performance across diverse popu-
lations and enhance its generalizability and reliability. 
Additionally, while we selected relatively accessible clini-
cal blood biomarkers as input variables for the predictive 
model, the specificity and sensitivity of these biomarkers 
may not fully cover all complex scenarios of breast cancer 
bone metastasis. In clinical practice, it may be necessary 
to combine more biomarkers or other clinical features to 
further optimize the model’s predictive ability. Further-
more, although the LightGBM algorithm performs well 
in handling complex nonlinear relationships, its sensitiv-
ity to data quality and feature selection needs attention. 
The quality of data, standardization, and feature selection 
significantly impact model performance. Future research 
needs to further optimize these aspects to enhance the 
stability and reliability of the model. Lastly, with advances 
in technology and medical research, new biomarkers and 
technologies continue to emerge, which may pose new 
challenges and opportunities for the construction and 
application of existing models. Therefore, continuous 
technological innovation and data updates are crucial for 
the ongoing optimization and widespread application of 
the model.

Conclusions
In conclusion, this study successfully developed and 
validated artificial intelligence clinical models and com-
prehensive models for predicting breast cancer bone 
metastasis based on clinical blood biomarkers. Par-
ticularly, the LightGBM model exhibited high accuracy 
and potential clinical utility in predicting and identify-
ing breast cancer bone metastasis. In China’s healthcare 
system, patients with advanced cancer stages are often 
referred to economically developed regions for treat-
ment, while underdeveloped regions may experience 
delayed diagnosis due to a lack of early cancer screening. 
Therefore, the model has the potential to mitigate disease 
misdiagnosis caused by a lack of imaging technology in 
underdeveloped regions and improve the clinical deci-
sion-making skills of primary care physicians, thereby 
providing patients with more timely treatment. Similarly, 
in developed regions, the model can reduce the demand 
for expensive or invasive imaging techniques. This study 
highlights the prospect of using easily accessible clinical 
blood biomarkers for developing artificial intelligence 
predictive tools.
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