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Abstract

Background: Uterine Fibroids (UFs) growth is ovarian steroid-dependent. Previous studies have shown that estrogen
and progesterone play an important role in UF development. However, the mechanism underlying progesterone
induced UF pathogenesis is largely unknown. In this study, we determined the expression of progesterone receptor
and compared the expression level of progesterone-regulated genes (PRGs) in human myometrial cells from normal
uteri (MyoN) versus uteri with UFs (MyoF) in response to progesterone.

Methods: Primary human myometrial cells were isolated from premenopausal patients with structurally normal uteri
(PrMyoN). Primary human myometrial cells were also isolated from uterus with UFs (PrMyoF). Isolated tissues were
excised at least 2 cm from the closest UFs lesion(s). Progesterone receptor (PR) expression was assessed using Western
blot (WB). Expression levels of 15 PRGs were measured by gRT-PCR in PrMyoN and PrMyoF cells in the presence or
absence of progesterone.

Results: WB analysis revealed higher expression levels of PR in PrMyoF cells as compared to PrMyoN cells. Furthermore,
we compared the expression patterns of 15 UF-related PRGs in PrMyoN and PrMyoF primary cells in response
to progesterone hormone treatment. Our studies demonstrated that five PRGs including Bcl2, FOXOT1A, SCGB2A2, CYP26al
and MMP11 exhibited significant progesterone-hyper-responsiveness in human PrMyoF cells as compared to PriyoN cells
(P < 0.05). Another seven PRGs, including CIDEC, CANP6, ADHL5, ALDHAT, MTIE, KIK6, HHI showed gain in repression in
response to progesterone treatment (P> 0.05). Importantly, these genes play crucial roles in cell proliferation, apoptosis,

cell cycle, tissue remodeling and tumorigenesis in the development of UFs.

Conclusion: These data support the idea that progesterone acts as contributing mechanism in the origin of UFs.
Identification and analysis of these PRGs will help to further understand the role of progesterone in UF development.
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Background
Uterine fibroids (UFs) are smooth muscle cell tumors
originating from the myometrium. Tumors occur in 70—
80% of women overall and are clinically manifested in
25-50% by 50 years of age [1].

UFs are ovarian steroid hormones dependent [2].
While estrogen has been considered the major mitogenic
factor in the uterus, progesterone (P4) also play a key
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role in UF growth and development [3]. There are con-
flicting results about the role of progesterone in UF de-
velopment either it is stimulatory or inhibitory [4].
Several studies had proved the essential role of the pro-
gesterone in the pathogenesis of UFs. A xenograft ani-
mal model demonstrated that estradiol upregulated the
PR levels, and volume maintenance and growth of UFs
were P4 dependent (Hiroshi Ishikawa et al. Endocrin-
ology 2010 and For human studies,pregnancy stimula-
teed UF development / growth were suppressed with
antiprogestin therapy [5]. Several other studies demon-
strated that GnRH agonists were capable of reducing UF
size, and progestin add-back therapy prevented this
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reduction [6-8]. In addition, LNG (levo —norgestrine)
(treatment in vitro decreased UF cell viability and in-
duced apoptosis. Similarly, a number of antiprogestin
drugs and SPRM (selective progesterone receptor modu-
lator) have been developed and tested in clinical trials
for the treatment of UFs, including Mifepristone, Aso-
prisnil and Ulipristal acetate. These studies provide
strong evidence for the mitogenic effect of progesterone
on UF pathogenesis [9-11].

The progesterone responses are mediated by two path-
ways, the rapid non-genomic signaling and slower gen-
omic one. The genomic pathway can be mediated by
binding of progesterone to PR result in binding to DNA
and regulate the expression of target genes. There are
two types of PR, PR-A and PR-B [12-14]. PR-A and -B
actions are divergent from each other. PR-B differs from
PR-A in that it contains an additional 164 amino acids
at the amino-terminus [15, 16]. Another mode of action
are non-genomic pathway, in which the progesterone ac-
tivate a variety of rapid signaling events in the cells [17].

Eker rat model carrying a germ-line defect in the tu-
berous sclerosis complex-2 (75c-2) tumor suppressor has
been used to determine the interaction between genetic
susceptibility and early-life environmental exposure,
which contributes to the pathogenesis of UFs [18, 19].
Developmental exposure to xenoestrogens such as di-
ethylstilbestrol (DES) increased the tumor-suppressor-
gene penetrance, tumor multiplicity and size in predis-
posed animals, and DES exposure caused reprogram-
ming of estrogen-response genes expressed in UFs and
resulted in alteration of these genes in UFs tumor gen-
esis. Recently, we demonstrated that developmental ex-
posure to DES expands the myometrial stem cells
(MMSCs), which linked to the increases risk of UF de-
velopment. In human studies, the correlation between
number of MMSCs with risk of UFs was identified in
women. Myometrium from Caucasian (CC) women with
UFs exhibited increased numbers of MMSCs as com-
pared to CC women without UFs, and myometrium
from African-American (AA) women had the highest
number of MMSCs: AA-with UFs > CC with UFs > AA-
without UFs > CC-without UFs [20]. In addition, MMSC
population expanded in African American women, is
correlated with parity and UF number, and fluctuates
with cyclic menstrual cycle hormone changes and age
[21, 22]. These studies suggest that MyoF was primed
and exhibited a distinct profiling at molecular and cellu-
lar levels as compared to MyoN, which become at risk
for later tumorigenic transformation. However, how the
P4 triggers the transformation is unknown.

The object of this study is to identify progesterone re-
sponsive genes in cells from human MyoF verse MyoN
tissues that will help to understand the role of progester-
one in UF development.
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Methods

Patients and myometrium specimens

The study was approved by Augusta University’s Institu-
tional Review Board. Myometrium were obtained from
Caucasian women who underwent abdominal hysterec-
tomy for UFscause or any other causes. The ages of the
patients are from 33 to 48 years old and none had received
hormonal therapy for at least three cycles before surgery.
The case interquartile range is 6. Informed consent was
obtained from each patient before surgery for the use of
extirpated uterine tissues for culture experiments.

Myometrial cell isolation and cell culture

Primary human myometrial cells were generated from the
adjacent myometrial tissue of human uterus with UF after
hysterectomy at least 2 cm away from the closest UFs le-
sion (PrMyoF). Also we isolated the primary human myo-
metrial cells from uterus without UFs (PrMyoN). Isolation
of the primary cell population from tissues was performed
as described previously [23]. Briefly, a portion (0.5 cm3) of
fresh myometrial tissue was washed in culture medium to
remove blood and then chopped into small pieces under
sterile conditions, transferred into a 15-ml screw cap tube,
and suspended in Hanks Balanced Salt Solution contain-
ing 13 antibiotic-antimycotic (Thermo Fisher Scientific)
and 300 U/ml collagenase type 4 (Worthington Biochem-
ical Corp.). Suspended tissue pieces were incubated at
37°C for at least 12h to obtain individual cells and/or
clumps of cells. The cell suspension was passed through a
100-pm pore-sized sterile nylon filter and the suspension
of individual cells was plated out and incubated at 37 °C,
allowing the cells to attach to the 100-mm sterile tissue
culture-treated plate containing smooth muscle cell basal
medium (SmBM; catalog no. CC- 3181; Lonza) containing
5% fetal bovine serum (FBS) and supplemented with
SmBM singlequots (catalog no. CC-4149). This SmBM
singlequot contains hEGE, insulin, hFGF-B, and gentami-
cin / amphotericin-B. These cell culture experiments were
performed successfully with ten uterine tissue specimens
collected from different patients, of which five were from
the normal uterus and the other five were from uterus
with UFs.

Protein extraction and Western blot analysis

Pellets were lysed in lysis buffer with protease and phos-
phatase inhibitor cocktail (Thermo Fisher scientific, Wal-
tham, MA, USA), and protein was quantified using the
Bradford method (Bio-Rad protein Assay kit, Hercules,
CA, USA). Western blot was performed as described pre-
viously [24] Blots were done for two different isoforms of
the progesterone receptors PR-A, PR-B. Both are poly-
clonal antibody used in dilution 1: 500 (Santa Cruz sc-
7208, sc-538).
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Cell treatment

Primary myometrial cells were cultured in 60-mm dishes
at 30-40% confluence at an approximate density of 5 x
10° cells/dish at 37° C in a humidified atmosphere of 5%
CO, in the regular SmBM media. When the cells were
reached at approximately 80% confluence, the cells were
grown in serum-free medium for 24 h. Then the cells
were treated with P4 (1.0 ng/mL) for 72 h.

Quantitative real-time PCR
RNA was isolated according to the protocol using RNeasy
Mini Kit. Following RNA extraction, cDNA was made by
Reverse-transcribing 1 ug of RNA using the (RNA to cDNA
Eco Dry Premix (double Primed)). Aliquots of cDNA were
made for each sample and stored at —20 °C until analyzed.
SYBR Green real-time PCR was performed as de-
scribed previously [25]. Briefly, RNA expression of genes
was detected using Sso Advanced Universal SYBR Green
Supermix on a Bio-Rad CFX96 real-time PCR system.
Data were analyzed using Bio-Rad CFX manager soft-
ware. Each biological sample was run in triplicate for
each individual experiment. All assays were carried out

Table 1 List of primer sequences used for gPCR [26]
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in 96-well format. Real-time fluorescent detection of
PCR products was performed with the CF96X Real-
Time PCR System (Bio-Rad) using the following ther-
mocycling conditions: 1 cycle of 95°C for 10 min; 40 cy-
cles of 95°C for 30s, and 60°C for 1 min. The primer
sequences for qPCR were shown in Table 1 [26].

Statistical analysis

All values are expressed as means + SE. Comparisons be-
tween two groups were done using the unpaired Student t-
test. Differences between groups were examined by ANOV.
Values of P< 0.05 were considered statistically significant.

Results

Subject characteristics

All the samples were taken from the Caucasian women
with age ranges 33—48 years old (median 41.5). Subject
characteristics is shown in Table 2 (1 = 10).

Altered PR expression in MyoN and MyoF
To determine if MyoN and MyoF exhibited differential
gene expression pattern in response to P4 treatment, we

Gene Name Function Forward primer (5-3) Reverse primer (5--3)
FOXO1A Forkhead box O1A Transcription factor in induction  AAGAGCGTGCCCTACTTCAA CTGTTGTTGTCCATGGATGC
of apoptosis
Bcl2 B-cell CLL/lymphoma 2 Block apoptotic AGTTATCGGCTTCAGTGGTCT CTGCCCGCTTCCTAGCTTG
SCGB2A2  Secretoglobin, family 2A, A uteroglobin-related genes ACCATGAAGTTGCTGATGGTC GGCATTTGTAGTGGCATTGTC
member 2
Control cell cycle and DNA
replication.
CIDE cell death-inducing Induce apoptosis AAGTCCCTTAGCCTTCTCTACC CCTTCCTCACGCTTCGATCC
DFFA-like effector c
CAPN6 Calpain 6 It is calcium-activated cysteine GGAAGCGTCCACAGGACATTT TCATTGCCTTGTTCCCCAATC
proteinases
CYP26al cytochrome P450, family 26,  RA catabolizing enzyme AGAGCAATCAAGACAACAAGTTAG  ATCGCAGGGTCTCCTTAAT
subfamily a, polypeptide
ALDH1a1 Aldehyde dehydrogenase RA synthesis enzymes GCACGCCAGACTTACCTGTC CCTCCTCAGTTGCAGGATTAAAG
family 1, subfamily A1
ADH5 Aldehyde dehydrogenase RA synthesis enzymes ATGGCGAACGAGGTTATCAAG CATGTCCCAAGATCACTGGAAAA
family5
MT1E Metallothionein 1E Metallothioneins (MTs) family GCAAGTGCAAAAAGTGCAAAT CACTTCTCTGACGCCCCTTT
- that bind to heavy metal ions
MT2A Metallothionein 2A and minimize reactive oxygen TCGGACAAGTGCAGCTGCTG CCCTCCCAGTTCAATCCCTC
MTG2 Metallothionein G2 species. TGGGACACAAACCTCAAATG TGATGAGCCTATGCAGACAC
KIK6 Regulation of the inflammatory ~ CCAAACTCTCTGAACTCATCCAG GTGTCAGGGAAATCACCATCTG
process
HHI () Indian hedgehog down regulation of cellular AACTCGCTGGCTATCTCGGT GCCCTCATAATGCAGGGACT
division
Calcitonin Reduce production of CCTATCCAACAATAGAGCCCAAG TGCATTCGGTCATAGCATTTGTA
pro-inflammatory cytokines,
protective factor in ischemia
MMP11 Matrix metalloproteinases Regulate cell-cell interactions AGACACCAATGAGATTGCAC GCACCTTGGAAGAACCAAATG

and release the growth factors
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Table 2 Subject characteristics (n = 10)

Patient ID  Type of primary cell Age Ethnicity = Diagnosis
Subject 1 Pr MyoN 39 Caucasian  Prolapsed uterus
Subject 2 Pr MyoN 40 Caucasian  Prolapsed uterus
Subject 3 Pr MyoN 38 Caucasian  Prolapsed uterus
Subject4  Pr MyoN 43 Caucasian  Prolapsed uterus
Subject 5 Pr MyoN 39 Caucasian  Prolapsed uterus
Subject 6 Pr MyoF 46 Caucasian  uterus with UFs
Subject 7 Pr MyoF 45 Caucasian  uterus with UFs
Subject 8 Pr MyoF 33 Caucasian  uterus with UFs
Subject 9 Pr MyoF 48 Caucasian  uterus with UFs
Subject 10 Pr MyoF 45 Caucasian  uterus with UFs

first examined the expression of both PR-A, PR-B in
MyoN and MyoF primary cells. Western blot (WB) ana-
lysis showed that the expression levels of PR-A were sig-
nificantly higher in PrMyoF as compared to PrMyoN)
(Fig. 1a). The similar result was achieved for the PR-B
(Fig. 1b). We confirmed the result in other patients in
our experiment (P < 0.05).

Genes show gain of induction in response to
progesterone (P4)

Previous studies have identified various progesterone
target genes in endometriosis or during menstrual cycle
[27-29]. In this study, we selected 15 UF-related genes
and determined their differential expression between
PrMyoF and PrMyoN cells in the presence or absence of
the P4 (1.0 ng/ml) by qRT-PCR.

In MyoF primary cells, significant upregulation of five
genes (Bcl2, FOXOIA, SCGB2A2, CYP26al and
MMPI1) was observed in response to P4 treatment
(Fig. 2). As shown in Fig. 2a, although the FOXOIA gene
showed no difference of RNA expression between MyoN
and MyoF cells at basal levels, and no significant change was
found in prMyoN cells in response to P4 treatment (P =
0.5), significant gain in induction was observed in prMyoF
primary cells in response to P4 treatment (P < 0.05).

The basal levels of Bcl 2 gene expression between MyoN
and MyoF primary cells did not reach significant difference
(P=0.7). However a significant increase of Bcl2 expression
was observed in MyoF cells in response to P4 treatment
(P<0.01) (Fig. 2b), but not in MyoN cells. Similar finding
was achieved for SCGB2A2 gene as MyoF cells exhibited
gain in induction of SCGB2A2 gene expression (P < 0.05)
but not MyoN cells in response to P4 treatment (Fig. 2c).

For MMP-11, a significant differential expression be-
tween MyoF and MyoN (p <0.05) was observed. MyoN
cells showed insignificant gain in induction in response to
P4 treatment. However, MyoF cells exhibited a significant
gain in induction after P4 treatment (P < 0.01) (Fig. 2d).
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Fig. 1 Western blot analysis of progesterone receptor A and B in
MyoF and MyoN cells. Western blot analysis of proteins extracted
from normal myometrium cells in normal uterus (MyoN) (n =5) or
myometrium of uterus with UFs (MyoF, n =5) was performed. Total
lysates from myometrial tissues were extracted and subjected to
Western blot analysis using antibodies against Progesterone receptor
A (@) and Progesterone receptor B respectively (b). B-actin was used
as an endogenous control. A statistically significant increase in
expression of PR-A was observed in PrMyoF cells as compared to
PrMyoN cells (a, P < 0.05). b showed a statistically significant increase
in expression of PR-B in PrMyoF compared to PrMyoN cells

For CYP26al gene a significant gain in induction in
MyoF was observed in response to P4(P = 0.05) (Fig. 2e).
But gain in induction of CYP26al gene expression was
not found in Pr MyoN cells .

Genes show gain of repression in response to
progesterone (P4)
The other seven genes showed down regulation in MyoF
cells in response to P4 treatment. Three of these genes are
responsible for apoptosis and cell cycle. As shown in
(Fig. 3a), the expression of CIDEC gene was significantly
higher in PrMyoF as compared to PrMyoN cells (P < 0.05).
In addition, P4 treatment resulted in a significant gain of re-
pression in MyoF cell (P<0.05), but not in MyoN cells.
Also the gain of repression in respond to P4 was also found
for CANP6 gene (Fig. 3b) (P<0.05) and HHI gene
(P<0.05)(Fig. 3c) in MyoF cells, but not in MyoN
cells. Comparing the basal levels of CANP6 and HHI
expression between PrMyoN and PrMyoF, the expres-
sion of CANP6 gene exhibited no different but the
expression of HHI gene exhibited statistically signifi-
cant higher in PrMyoF cells as compared to PrMyoN
cells (P <0.001).

The RNA expression of 2 genes (ADHLS5, ALDHIAI)
related to RA synthesis enzymes was also measured at
basal levels as well as in P4-treated MyoN and MyoF
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Fig. 2 Gain of induction in response to P4. The expression levels of five genes including FOXOTA (a), Bcl2 (b), SCGB2A2 (c), MMP11 (d), CYP26a (e)
were determined by qRT-PCR after treatment with P4 (1.0 ng/ml) for 3 days in PrMyoN and PrMyoF cells. (N = PrMyoN cells without treatment,
Np = PrMyoN cells after treatment with P4, F = PriMyoF cells without treatment, Fp = PrMyoF cells after treatment with P4). These experiments
were performed with 10 different cultured cell specimens. Five genes show either decrease or no change in response to P4 in MyoN cells.
However, in PrMyoF cells, all the 5 genes including FoxolA (a), Bcl2 (b), SCGB2A2 (c), MMPT1 (d), CYP26al(e), exhibited a significant upregulation
in response to P4 treatment. * p < 0.05, **p < 0.01. ***p < 0.001

cells. For ADHLS5 gene (Fig. 3d), significant differential
response to P4 was found between PrMyoN and PrMyoF
cells. A significant gain in repression in PrMyoF cells
after P4 treatment (P <0.05), but not in PrMyoN cells.
Similar finding was observed for ALDHIal expression in
response to P4 in PrMyoF and PrMyoN cells (Fig. 3e).

The expression of gene KIK6 (Fig. 3f), which is the
genet hat associated with regulation of inflammatory
process, exhibited no difference PrMyoN and PrMyoF
cells. And alteration of its expression was not observed
after treatment with P4 in PrMyoN cells. However, a sig-
nificant gain in repression after P4 treatment was seen
in PrMyoF cells (P < 0.05).

Metallothionein (MT) family is responsible for binding
to heavy metal ions and minimize reactive oxygen spe-
cies. The response of several genes of MT family to P4
were examined (Figs. 3g and 4). MTIE (Fig. 3g) exhib-
ited significant repression in its expression with P4 treat-
ment in the PrMyoF cells (P < 0.05), but not in PrMyoN
cells. However, no significant changes of other MT fam-
ily genes including MT2A and MTG2 were observed be-
tween PrMyoN and PrMyoF cells at basal levels as well
as in response to P4 treatment (Fig. 4a, b).

The basal level of Calcitonin expression between
PrMyoN and PrMyoF cells and their response to P4 was
examined. There is no significant difference of RNA
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Fig. 3 Gain of repression in response to P4. The expression of seven genes CIDEC (a), CANP6 (b), HHI (c), ADHL5 (d), ALDH1al (e), KIK6 (f), MTIE ()
was determined by g-RTPCR in Pr MyoN and PriMyoF cells after P4 treatment (1.0 ng/ml) for 3 days. N = PrMyoN cells without treatment, Np =
PrMyoN cells after adding P4, F = PrMyoF cells without treatment, Fp = PrMyoF cells after adding P4. These experiments were performed with 10

expression between MyoN verse MyoF cells. Further-
more, no significant difference of RNA expression in
PrMyoN and PrMyoF cells in response to P4 treatment
were found (Fig. 4c).

Discussion
P4 is a key hormone, which contributes to the UF patho-
genesis. However, the molecular mechanism by which
P4 promotes the UF development is largely unknown. In
this study, we used PrMyoN and PrMyoN cell model
system and characterized the expression pattern of P4
response genes in response to P4 treatment, which may
contribute to increased risk of UF development.
Previous study showed that cultured UF cells had an
increased response to P4 compared to cultured normal
myometrial cells [30]. This study also showed that P4

receptor mRNA is highly expressed in UF cells as com-
pared the cells from adjacent myometrium. In our study,
we focused on P4 response in primary cells from normal
myometrium (MyoN) and at-risk myometrium (MyoF).
We demonstrated that the expression of PR was higher
in PrMyoF as compared to PrMyoN cells. The differen-
tial response of PrMyoN and PrMyoF to P4 seems to be
attractive. Among the genes we detected, we found two
types of changes in response to P4 treatment, gain in in-
duction and gain of repression respectively. These re-
sults suggested that the network of P4/PR signaling was
varied between PrMyoN and PrMyoF and the primed
PrMyoF turned out to be hyper-sensitive to P4, which
might lead to increased risk of UF development.

In this study, the expression of 15 P4-responsive genes
was examined in PrMyoF and PrMyoN cells using q-
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Fig. 4 The expression of MT2A, MTG2 and Calcitonin genes in response to P4. The expression of three genes including MT2A (a), MTG2 (b) and
calcitonin () in PrMyoN and PrMyoF cells was determined by real-time PCR after P4 treatment (1.0 ng/ml) for 3 days. N = PrMyoN cells without
treatment, Np = PrMyoN cells after adding P4, F = PrMyoF cells without treatment, Fp = PrMyoF cells after adding P4. These experiments were
performed with 10 different cultured cell specimens
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PCR analyses. Five of these genes including FOXOIA,
CYP26al, SCGB2A2, MMPI11 and Bcl 2 showed significant
up regulation in response to P4 treatment. The other seven
genes exhibited a significant down regulation, these genes
include CANP6, MTIE, ADHLS, Aldhlal, KIK6, HHI,
CIDEc. However, the expression of MT2A, MTG?2 and cal-
citrone was not altered in response to P4 treatment.

Expression of genes control the apoptosis in response to
progesterone

Apoptosis is a morphologic pattern of cell death [31].
There are multiple genes responsible for regulating this
process. Korsmeye [32], reported that the Bcl-2 proto-
oncogene has the ability to block apoptotic cell death in
multiple contexts. Increase in expression of Bcl-2 in
transgenic models will result in evasion of normal cell
death mechanisms leading to accumulation of cells and
tumor formation [33].

Previous studies showed that Bcl-2 protein expression
was predominant in UF cells compared to that in normal
myometrium cells [34]. The expression of Bcl-2 protein
in normal myometrium cells was very low that raised
the possibility that normal myometrium cells may be
more susceptible to apoptotic cell death. In addition, UF
cells exhibited increased expression of Bcl-2 protein in
response to P4 treatment. But the expression of Bcl-2
protein in cultured normal myometrium cells was not
affected by P4 treatment. Here in our study Bcl-2 gene
expression in at-risk myometrium tissues from the
uterus with UFs was remarkably augmented by P4 treat-
ment and this change was not found in normal myome-
trial cells.

Another gene that responsible also for apoptosis is
FOXOIA, it is a member of the FOXO subfamily of
Forkhead transcription factors [35]. According to the
previous study, activated FOXO proteins induced
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expression of genes that encode for proteins involved in
cell cycle inhibition [36]. Our study showed that this gene
exhibited hyper-response in PrMyoF cells after P4 treat-
ment. Another study determined the progestin effect in
FOXO1 expression and its activity in the endometrium
during endometrium menstrual cycle. They showed that
progestin enhanced FOXOI mRNA levels in mid- and
late-secretory endometrium [37]. In addition, FOXOIA
was considered as a key transcription factor responsible
for mediating apoptosis of decasualized human endomet-
rial stromal cells (HESC) in response to progesterone
withdrawal during the menstrual cycle by inducing the cell
death. Moreover, this study explains the effect of admis-
sion of medroxyprogesterone acetate (MPA, a synthetic
progestin) in enhancing the expression of FOXOIA in dif-
ferentiating human endometrial cells. MP also simultan-
eously induced cytoplasmic retention and inactivation of
this gene. Withdrawal of the MPA from decidualized
HESCs resulted in rapid nuclear accumulation of
FOXOIA gene, therefore leading to activation of apoptosis
and cell death [37]. Similar finding was observed in
PrMyoF cells, where the expression of FOXO1 was mark-
edly increased in response to progesterone treatment,
which provide a favorable condition for the pathogenesis
of UFs.

SCGB2A2 (Secretoglobin family 2A member 2) was
considered as uteroglobin-related protein, which con-
trols cell cycle and DNA replication. It was originally de-
tected by differential RNA expression levels in Breast
Cancer biopsies [38]. Previous studies demonstrated the
effect of SCGB overexpression on cell proliferation in
other human diseases and ovarian carcinoma. The role
of SCGB2A2 in patho-physiology of the ovarian tumor
was identified [39]. The overexpression of SCGB2A2 is
positively correlated with the FIGO stage, the tumor
grade and the mitotic index of the ovarian cancer [40].
In our study, although no significant expression of
SCGB2A2 was observed in ProMyoF and PrMyoN cells,
ProMyoF cells was remarkably augmented by P4, which
was not the same with ProMyoN cells. This study sug-
gests that P4 might promote the UF development by in-
creased cell proliferation and enhancement of the DNA
replication via SCGB2A2.

The cell death-inducing DFF45-like effector (CIDE)
family includes CIDEa, CIDED, and CIDEc. It has been re-
ported that the (CIDE) family plays an important role in
lipid and fat metabolism [40-42]. Previous studies have
reported that CIDEa, CIDEc were highly expressed in adi-
pose tissue, and in skeletal muscle. ICIDEc is capable of
inducing apoptosis in mammalian cells [43]. DFF45 is a
subunit of the DNA fragmentation factor which is cleaved
by active caspase-3 during apoptosis. The main function
of CIDEC is energy homeostasis, and its absence may re-
sult in insulin resistance, and resistance to diet-induced
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obesity [44]. Here in our study this gene showed gain of
repression in response to P4 as a marker of decrease in
the apoptosis that might be involved in UF development.

Another gene that showed gain in regression in our
study was CANP6. It is calcium-activated cysteine pro-
teinases. Calpains have been involved in many biological
events including regulation of the cell cycle, apoptosis,
cell adhesion and motility [45, 46]. So the regression of
this gene will decrease the apoptosis as well as down
regulation of cell cycle all together will favor the devel-
opment of UFs.

Expression of genes control the retinoic acid in response
to progesterone

RA, is the natural metabolite of vitamin A. Previous
studies showed that RA signaling played an important
role in the female reproductive trace function [47].
ADHS and ALDHIlal are RA synthesis enzymes and
CYP26al(cytochrome P450, family 26, subfamily a, poly-
peptidel) is a RA catabolizing enzyme. Previous studies
demonstrated that the expression of these are altered
during preganyc which may be related to progesterone
signaling. ADHS expression was increased by 2.5 folds
during pregnancy. The expression of ALDHIal in the
endometrial glandular compartment was increased on
gestational early days until the implantation phase. The
expression of CYP26al was strongly detected in the
uterine epithelium. Moreover, these studies indicated
that early pregnancy needed the synthesis and degrad-
ation of RA to be balanced to allow RA signaling to pre-
pare for implantation without harmful effects on the
embryo [48]. Our result has demonstrated that RA syn-
thesis genes (ADHS5, ALDHI1al) show gain in repression
in response to P4, and RA catabolic enzyme (CYP26al)
were rapidly gain induction by the P4-PR axis. This
might result in increasing retinoic acid catabolism and
decrease in Vitamin A in the myometrium tissue. All
this together will favorable the proliferation of the myo-
metrium, which provide pro-fibroid condition to in-
crease the risk of UF development.

Expression of other genes in response to progesterone

In human, over 20 functional Matrix metalloproteinases
MMPs have been identified [48]. MMPs are zinc endo-
peptidases capable of releasing the growth factors that
are bound to the extracellular matrix (ECM) [49] regu-
lating cell-matrix and cell-cell interactions. Matrix me-
talloproteinase 11(MMP11) is responsible of serpins
cleavage and so it stimulate the development of tumor
[50, 51]. Our study showed that MMP-11 mRNA was
significantly increased in myometrium cells from uterus
with UFs compared with myometrium cells of normal
one. Also gene expression of MMP11 showed significant
gain in induction after P4 treatment in PrMyoF cells.
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Previous study demonstrated increased expression of
MMP-11 in UFs as compared to myometrium.

KLK6 belonging to kallikreins gene family is a serine
protease [52—54]. It is down-regulated by the P4-PR axis.
KLk6 is responsible for regulation of the inflammatory
process and vascular permeability, and edema [55]. Pre-
vious studies in mouse graved uterus showed that this
gene was upregulated by the P4-PR axis signaling sug-
gesting the important role of this gene in the implant-
ation of the embryo in the uterus [27]. In our study, the
repression of this gene in response to P4 may result in
the formation of the UFs by losing the regulation of the
inflammatory process.

Indian hedgehog (HHI), one of the Hedgehog family of li-
gands, is a P4-regulated gene in the uterus [56, 57]. It plays
a role in down regulation of cellular division [58]. In the hu-
man endometrium, the role of Hedgehog signaling in UFs
is largely unknown [59]. HHI gene shows a significant de-
crease in expression s between the early secretory to the
mid secretory phase. It also plays a role in embryo implant-
ation by regulation of stromal cell proliferation and inhib-
ition of epithelial E2 signaling. In addition, Hedgehog
signaling was involved in the women with endometriosis
[60-62]. and in endometrial cancer [63]. Here in our study
this gene showed a gain of repression in the PrMyoF cells
in response to P4, suggesting that this change may be in-
volved in the increased risk of UF pathogenesis.

Metallothioneins (MTs) comprise a family of genes
clustered on chromosome 16q that bind to heavy metal
ions and minimize reactive oxygen species. Previous
studies demonstrated low MT expression in endomet-
rium of women with endometriosis [29]. In our study
MTIE is the only one we detected that showed signifi-
cant repression with P4 treatment in the PrMyoF cells.

The location of the Calcitonin gene is in non-neuronal
tissues. Its define function remains unclear, but previous
studies identified their role in cardiovascular system as it
exhibited a potent vasodilator effect [64]. There are
many other researches done on calcitonin effect on the
heart. These researchers show its role in prevention of
ischemia as well as endotoxic shock [65]. These shock
can be done by the suppressor effect of calcitonin on
some pro-inflammatory cytokines production [e.g.,
macrophage inflammatory protein-2 (MIP-2) and kera-
tinocyte chemoattractant (KC)] [66, 67]. Moreover, calci-
tonin has a protective effect against ischemia [68]. So
the decrease in its expression may result in ischemia
stimulation of the inflammatory reaction. However, in
our study it showed gain in repression suggesting the
complex role of this gene in response to P4 treatment.

Conclusion
Our studies demonstrate for the first time that PrMyo
cells and PrMyoN from either at risk myometrium or
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normal myometrium exhibit a differential response to P4,
the key hormone for UF development. P4-responsive
genes in PrMyoF cells exhibit a P4-hyper-responsiveness,
suggesting that myometrium from uterus with UFs is
primed and become at risk for later tumorigenic trans-
formation. However, due to sample size (n = 10) and race
limitation (all from Caucasian), further investigating the
role of P4 in alteration of normal myometrium in a large
sample size as well as using tissues from at high risk popu-
lations such as African American are needed. Moreover,
evaluating of P4 response in relevant animal model or 3D
system is also highly needed for understanding the patho-
genesis of UFs.
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